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F
ILTERS ARE crucial parts of RF/
microwave systems—so much so 
that, often, many different types of 
filters and filter responses are need-

ed within a single network. Fortunately, a 
new general synthesis method has been 
developed for designing resistorless nth-
order current-mode universal filters ca-
pable of providing a number of different 
filter responses. These include lowpass, 
highpass, bandpass, bandstop, and all-
pass responses, and do not necessitate 
changes to the basic filter topology. 

Such a “universal” filter is based on a current differencing 
transconductance amplifier (CDTA) and features a current-mode, 
multiple-input, single-output structure. Different responses are 
achieved by changing how the external current signals are com-
bined. Constructed without resistors, such a filter is assembled 
with n active components and n grounded capacitors, making it 
suitable for integrated-circuit (IC) fabrication processes. The val-
ues of the passive elements are found from the coefficients of the 
desired transfer function. As an example of how to realize such a 

filter, a simulation will be performed for a 
fourth-order Butterworth filter with the aid 
of the PSpice® simulation software from Ca-
dence® (www.cadence.com). 

Filters are used for many purposes 
in communications systems, such as for 
image rejection at RF and microwave 
frequencies and for channel selection at 
intermediate frequencies (IFs). Filters 
fabricated on semiconductor chips main-
ly apply switched capacitors or a contin-
uous-time structure, especially for con-
tinuous-time current-mode techniques. 

Recently, a new current-mode active element with two current 
inputs and two kinds of current output, called a current dif-
ferencing transconductance amplifier (CDTA), was developed 
and shows good versatility.1 

The CDTA represents a synthesis of the well-known ad-
vantages of a current-differencing buffered amplifier (CDBA)2 
and a multiple-output operation transconductance amplifier 
(OTA)3 to facilitate the implementation of current-mode ana-
log signal processing. It also exhibits capability for electronic 

tuning by means of its 
transconductance gain, 
gm. As a result, CDTAs 
have been widely used 
in current-mode signal-
processing circuits, such 
as inductance simulator 
circuits4-6 and sinuosoidal 
oscillator circuits,7-9 and 
is a promising choice for 
current-mode filters.10-19

CDTA-based biquad 
universal filters have un-
dergone considerable 
study. For example, refs. 
20 and 21 detail work 
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DesignFeature

This unique resistorless, current-mode filter design can realize  
a variety of filter responses, including lowpass, highpass,  
bandstop, and all-pass responses without changing topology. 
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1.	 This simple diagram represents a  

basic symbol for a current differencing 

transconductance amplifier (CDTA).
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2. This circuit is a realization of a CMOS-based CDTA filter.
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on a CDTA-based Kerwin-Huelsman-
Newcomb (KHN) current-model filter 
and a multiple-input, single-output 
universal filter, respectively. Both filters 
incorporate two CDTAs, two grounded 
capacitors, and simple structures. Refer-
ence 22 also reports on a CDTA-based 
universal filter which can be cascaded 
while simultaneously providing all stan-
dard filter functions. However, in spite of 
these reported filter circuits, research on  
nth-order CDTA-based filters has been 
inadequate.23-26

References 23 and 24 proposed two 
kinds of nth-order current-mode filters 
using CDBAs. These filters are realized 
with the aid of a signal-flow graph and 
employ too many passive components. 
Reference 25 details a CDTA-based 
nth-order lowpass filter with a simple 
structure and n grounded capacitors. 

It is based on the analysis of a signal-
flow diagram. Reference 26 proposes a 
method for creating an nth-order circuit, 
in which a fourth-order bandpass filter  
is designed. 

These design approaches suffer draw-
backs, however. They can only realize 
nth-order single filter functions, such as 
a lowpass filter,25 and do not meet the 
requirements of a universal filter. These 
approaches employ circuit structures 
with single inputs to single outputs.23-26 
When needing to change the filter func-
tion, the circuit’s topology must be 
changed simultaneously, not taking full 
advantage of the port characteristics and 
providing only limited filter flexibility. 
Another drawback is that these circuits 
are complicated and require many pas-
sive components; for example, the cir-
cuits in refs. 23 through 25 require exter-

nal resistors and more CDTAs than the 
circuit of ref. 26. 

Because of the shortcomings of 
these different universal filter design 
approaches, a new general synthesis 
method for CDTA-based resistorless nth-
order current-mode universal filters was 
developed; it is based on mathematical 
analysis of transfer functions and signal-
flow graphs. The circuit realization is ob-
tained from a signal-flow graph, and the 
circuits developed from this approach 
feature a current-mode, multiple-input, 
single-output structure. By manipulating 
the amount and mode of joining the ex-
ternal current signals, a single circuit can 
provide lowpass, highpass, bandpass, 
bandstop, and all-pass filter functions 
without changing the topology. 

The natural angular frequency of the 
filter, ω0, can be adjusted properly by 
means of  current IB. The circuit con-
figuration is simple: It contains n active 
components, n grounded capacitors, 
and no resistors, which is advantageous 
for IC fabrication. The required values of 
the passive elements can be found from 
the coefficients of the transfer function 
to be realized. Such a universal filter can 
be used in many applications, including 
in RF/microwave transmitters/receivers, 
in phase-locked-loop (PLL) frequency-
modulation (FM) demodulators, in test 
instrumentation, and in wireless com-
munications systems. It can also be used 
for an active filter in place of the surface-
acoustic-wave (SAW) filters typically 
used in GSM systems. 

The circuit symbol of the CDTA is 
shown in Fig. 1, where p and n are posi-
tive and negative current input termi-
nals, z and x are current output termi-
nals. Its current characteristics can be 
described by the matrix of Eq. 1:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

where Vz = Iz * Zz; gm = the transconduc-
tance gain; and Zz = an external imped-
ance connected at terminal z. 

Figure 3

Ii an - 1/san - 2/ san - 1

bn

b0/a0
a0/sa 1 a1/sa2

I0  
-1  

-1  
-1   

-1   

-1

b1/a1

b2/a2

bn - 2/an - 2

bn -1/an -1

3. This is an nth-order 

equivalent signal flow 

graph for the universal 

filter.

an – 1S–1a0/a1S–1 a1/a2S–1 an – 2/an – 1S–1

Figure 4

I1 I2  In – 1 In
I0

–I0–I0
–I0 –I0

Σ Σ Σ Σ

4. This is an nth-order functional equivalent circuit block diagram for the universal filter.
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According to Eq. 1, the currents 
through terminal z follow the difference 
of the currents through terminals p and n 
(Ip− In), and flows from terminal z into an 
impedance Zz. The voltage drop at termi-
nal z is transferred to a current at termi-
nal x (Ix by means of transconductance 
gm, which is electronically controllable 
by an external bias current, IB.  

Such a universal filter can be con-
structed using a number of techniques: 
a possible CMOS-based CDTA circuit 
suitable for IC fabrication is shown in 
Fig. 2.20 The transconductance stage 
can be copied in a circuit, so the number 
of x ports for the CDTA can be chosen  
as needed.

For the design of an nth-order uni-
versal filter, the transfer function can be 
written as Eq. 2: 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

where:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

To present the feedback coefficient 
with units of gain and to simplify the de-
sign of the circuit, Eq. 3 can be modified, 
using the equivalent signal-flow graph 
shown in Fig. 3. According to the signal-
flow graph, and using the Mason formula 
leading with the input variable, the out-
put signal can be described by Eq. 4:

See Eq. 4  in box on p. 64.

where I1, I2…In +1 is the input variable 
with relationship to input signal Ii de-
scribed by Eq. 5:  

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

The system block diagram for Eq. 4 
is shown in Fig. 4. Using Fig. 4, the pro-
posed CDTA-based nth-order current-
mode universal filter can be obtained as 
shown in Fig. 5. By routine analysis, the 
single-output-current function realized 
by this circuit configuration is:

See Eq. 6  in box on p. 64.
where:

τ0 = gmn/Cn, 
τ1 = gmngm(n − 1)/CnCn − 1,...

  

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

That is: 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

and gmi is the transconductance gain pa-
rameter of the ith CDTA. 

From Eq. 6, through a rational chang-
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ing of the amount and mode of joining the external current sig-
nals, it is possible to derive the filter function in the following 
five ways:

1) If I1 = Iin and I2 = … In = In + 1 = 0, the lowpass filter response 
can be realized. 

2) When n is an even number, if: 
In/2 = Iin, and the other input currents are zero, or when n is an 

odd number, if I(n − 1)/2 = Iin or: 
I(n + 1)/2 = Iin and the other input currents 
are zero, a bandpass filter response can 
be realized. 

3) If I(n + 1) = Iin and I1 = … = In = −Iin, a 
highpass filter response can be realized. 

4) If I(n − 1)/2 = Iin and I2 = … = In = −Iin, 
and I1 = 0, a bandstop filter response can 
be realized. 

5) When n is an even number, if In + 1 

= Iin, 
In = −2Iin, 
In − 1 = 0, 
In − 2 = −2Iin, 
In − 3 = 0, . . . ,  I2 = −2Iin, 
In − 1 = 0, or when n is an odd number, if: 
In + 1 = Iin,
In = −2Iin, 
In − 1 = 0, 
In − 2 = −2Iin, 
In − 3 = 0, . . . , I2 = 0, and
I1 = −2Iin, 
an all-pass filter response can be realized. 

From Eqs. 6, 7, and 8, when calculat-
ing the required component parameters, 
if all gmi values are known (according to 
the filter transfer function), the value 
of capacitance Cn can be found from τ0 
and then the value of Cn − 1 can be found 
from τ0, τ1. The other values can then be 
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confirmed, and so forth, since it is fairly 
straightforward to find the required val-
ues of passive elements from the coeffi-
cients of the transfer function to be real-
ized. It is also apparent that the angular 
frequency of the filter, ω0, can be adjust-
ed properly by adjusting current IB. 

To verify this theoretical analysis, a 
simulation was performed in PSpice, 
for a current-mode fourth-order Butter-
worth filter using the CMOS-based CDTA 
circuit of Fig. 2. The filter was modeled in 
PSPICE with 0.5-μm CMOS parameters, 
available upon request from the authors. 
The cutoff frequency of the fourth-order 
Butterworth filter is 13 MHz,27

The filter has a transfer function de-
nominator polynomial of D(s) = s4 + 2.14 
× 107 + 2.292 × 1012 s2 + 1.437 × 1017 s + 
4.506 × 1021. The CDTA element in this 
case has a bandwidth of approximately 
420 MHz, and the circuit is supplied 
with symmetrical voltages of ±2.5 VDC. 
The external bias currents are IB1 = IB2 
= 85 μA, IB3 = 200 μA, and the transcon-
ductance gain, gmi, is 457.83 μS. One of 
these CDTAs is modified from the circuit 
in Fig. 2 and is chosen with five x ports. 
It is easy to obtain the value Ci from the 
above parameters: C1 = 15 pF, C2 = 7.3 
pF, C3 = 4.27 pF, and C4 = 2.14 pF. Fig-
ure 6 shows the simulation results, with 
theoretical test and computer simulation 
results in good agreement. MWRF
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6. These frequency responses show the different proposed filter 

functions: (a) lowpass, (b) bandpass, (c) highpass, (d) bandstop, (e) 

all-pass frequency response, and (f) all-pass phase response. 
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