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SR Helps shrink
Quad-Band Filter

A novel use of stub-loaded resonators enables the design of this compact bandpass
filter with four low-loss passbands and high out-of-band rejection.

andpass filters (BPFs) are

widely used in communi-

cations systems applica-

tions to transfer desired
bands of signals, at the same time reject-
ing unwanted signals. As communica-
tions systems add more channels and
bands, a growing number of BPFs is
needed in these applications, or filters
must be designed capable of channeling
multiple bands. To demonstrate the fea-
sibility of developing a quad-band BPF, a
filter was designed based on stub-loaded
resonators (SLRs) and modified from a
three-band filter.

Multiband bandpass filters are use-
ful for wireless applications as a way to
transfer a number of different chan-
nels with a smaller number of filters.
Different design approaches have been

adjusting impedance ratio and electrical
lengths of SIR, two desired operating
frequencies can be obtained.!

In refs. 2 and 3, tri-band BPFs were
designed based on SLRs. Most previous
work on multiband BPF architectures
focused on the design of dual-band and
tri-band BPFs, with few methods explor-
ing the design of quad-band BPFs.*¢ In
ref. 4, coplanar-waveguide (CPW)-fed,
dual-mode double-square-ring resona-
tors were employed to obtain quad-band
characteristics. In ref. 5, a quad-band BPF
was achieved by combining four basic
structures (outer-frame, U-shaped reso-
nator, modified end-coupled microstrip
line, and defected ground structures). In
ref. 6, a quad-band BPF using a single
type of half-wavelength resonator tapped

employed, including the design of L
dual-band BPFs using stepped-imped- Ly z,/3
ance-resonator (SIR) architectures. By : |
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by open-circuited stubs on a single lay-
er was presented. However, the above-
mentioned quad-band BPFs require mul-
tiple types of resonators or multilayered
fabrication technology; these tend to
increase filter size, cost, and complexity.

Based on a novel SLR, a compact BPF
with quad-band characteristics was inves-
tigated. The quad-mode SLR can achieve
four passbands simultaneously centered
at 1.5, 2.5, 3.5, and 5.2 GHz. To improve
the selectivity of the quad-band BPF, a
cross-coupling structure between the
SLRs and the filter’s input/output (I/O)
ports is employed. Measurements per-
formed on a fabricated prototype agree
closely with simulated results.

Figure 1(a) shows the structure of the
novel quad-mode SLR, which consists of
a common microstrip half-wavelength
resonator, an open stub, and a T-type stub.
One end of the T-type stub is grounded
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1. The geometry of a quad-mode SLR (a) can be compared to the geometry and equivalent circuit of a conventional tri-mode SLR (b), with the

weakly coupling frequency response of the quad-mode SLR also shown (c).
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by means of a metallized via hole.
The novel SLR is modified from a
tri-mode SLR, as shown in Fig. 1(b).
Due to its asymmetrical structure,

[Syq|—dB

it is difficult to obtain analytical
resonant frequencies for the quad-
mode SLR. But since the tri-mode
SLR is symmetrical, an odd-even-
mode method can be implemented,

|Spq|—dB

as shown in Fig. 1(b). Under condi-  (q)
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where:

c = the speed of light in free space.
¢, = the effective dielectric constant
of the substrate.

After substituting the shorted stub of tri-mode SLR with the
T-type stub, quad-mode performance can be obtained. Figure

L2, (€) L4, and (d) Ls.

1(c) shows the simulated frequency responses of the novel quad-
mode SLR under weakly capacitive coupling conditions. The
quad-mode SLR obtains four resonant poles simultaneously.
The transfer characteristics of the quad-mode SLR were stud-
ied for various dimensions with the help of the High-Frequency
Structure Simulator (HFSS 11.0) full-wave electromagnetic
(EM) simulation software from ANSYS (www.ansys.com), as
shown in Fig. 2. It can be seen that the four resonant frequen-
cies increase simultaneously as L; decreases. But only one or
two resonant frequencies increase as L,, Ly, and Ls decrease,
respectively. Therefore, by appropriately adjusting the resonator
dimensions, four desired resonant frequencies can be achieved.
Figure 3 shows the structure of the novel quad-band BPE. It
is composed of two SLRs and an interdigital I/O port. To real-
ize good out-of-band performance, a cross-coupling structure
between the SLRs and the I/O port was introduced, which can
generate one transmission zero between two resonant frequen-
cies.? The filter was fabricated on RT/duroid 5880 circuit sub-
strate material from Rogers Corp. (www.rogerscorp.com) with
a thickness of 1.0 mm and a relative dielectric constant (g,) of
2.2. The dimensions were selected as follows: W =3.0 mm; W,
=W, =W3=W,;=W5=Wg=W,;=1.0mm; L; =12.25 mm;
L, =8.5 mm; L; = 6.35 mm; L,= 2.5 mm; Ls = 5.0 mm; Lg = 2.5
mm; L; =8.0 mm; Lg=2.8 mm; Ly =3.0 mm; S; =0.75 mm; S, =
0.2 mm; and S3 = 0.35 mm. The via hole radius is 0.2 mm. As for
bandwidth control, the external quality factor (Q,) and coupling
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2. These are the simulated S-parameters for the quad-mode SLR for various dimensions: (a) L;, (b)

coefficient (k) should be considered. The values of Q. and k are
mainly determined by the gaps S;, as shown in Fig. 4.

The designed and fabricated quad-band BPF was measured
with a model N5230A vector network analyzer (VNA) from
Agilent Technologies (www.agilent.com), as shown in Fig. 5. The
measured center frequencies and 3-dB fractional bandwidths
(FBWs) of the quad-band filter are as follows: 1.5 GHz (FBW =
9.5%), 2.5 GHz (FBW = 19.3%), 3.5 GHz (FBW = 3.6%), and 5.2
GHz (FBW = 6.1%), as expected. The measured minimum pass-
band insertion losses are 0.45, 0.22, 1.35, and 1.59 dB, respective-
ly, while the return losses of each passband are better than 15 dB.
In addition, the novel quad-band bandpass filter can generate
transmission zeros with a better than 20-dB suppression degree
on both sides of the passbands. Due to its simple structure, com-
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3. This is the circuit configuration for the quad-band bandpass filter.
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4. These are simulated bandwidth responses for various dimensions
of the quad-band SLR.

pact size, and good performance, it should be quite suitable for
multiband communications systems. G
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