
T
ime can be critical in modern communications 
systems, such as time-division-duplex (TDD) wire-
less systems. Although frequency-division-duplex 
(FDD) approaches have long dominated cellular 

communications, limited spectrum and high cost are making 
TDD approaches more attractive, as evidenced by growing use 
of standards such as time-division synchronous code-division-
multiple-access (TD-CDMA) and TD Long Term Evolution 
(LTE).1,2 To prevent dead time in TDD switching, reception 
should ideally commence as soon as transmission has ended. 

However, a cellular system’s low-noise amplifier (LNA), which 
is typically shut down during transmission to prevent damage of 
active devices and receiver overload, can suffer delays in return-
ing to its active state. Because of these delays, a “guard time” 
of about 2% of the channel time must be allocated as settling 
time for the wireless system’s hardware.3 When transmission re- 
commences, any delay in shutting down the LNA can result in 
temporary receiver overload. 

In older wireless system implementations, the shutdown 
function was external to the LNA device. To reduce parts count 
and enable miniaturization of the LNA, the amplifier and its 
shutdown function are now typically integrated in a monolithic 
microwave integrated circuit (MMIC). Such MMICs are com-
mercially available with switching speeds ranging from one-half 
microsecond to several microseconds (Table 1). 

To enable further reduction in TDD dead time, a MMIC LNA 
was developed with an on-chip switching circuit optimized for 
speed. In addition to switching speed, this new LNA design 
must also meet the stringent noise and linearity requirements 
demanded by the cellular infrastructure. 

In designing this MMIC LNA with faster shutdown speed, 
the location of the switch location within the circuit can influ-
ence the switching speed and affect the ease of integration for 
the device. A shutdown function can be added to virtually any 
MMIC by connecting a switching transistor in series with the 
voltage supply, Vdd (Fig. 1). The transistor’s current-carrying 
capability must match the MMIC’s current consumption, typi-
cally ranging from tens to hundreds of milliamperes. The single-
supply MMIC design of Fig. 1 generates its gate bias (VGS) using 
voltage reference VD. 

Diode resistance RD limits the current through diode D. The 
forward-biased diode generates wideband noise and capacitance 
C is required to suppress that noise. Unfortunately, this capaci-
tance requires a finite amount of time to charge and discharge. 
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TABLE 1: COMPARING ON/OFF TIMES 
FOR VARIOUS SWITCHED MMIC LNAS

Reference Technology On time,
ton (µs)

Off time,
toff (µs)

16 SiGe 8.5 5.0

17 0.5-μm eHEMT 0.5 0.5

18 GaAs HBT 0.4 0.3

19 0.25-μm ePHEMT 0.6 unknown

20 unknown 1.4 0.4

21 unknown 1.4 0.4

Current 0.25-μm ePHEMT 0.05 0.02
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The time constant associated with RDC slows the rise time of the 
gate voltage VGSat with power on, while RGC delays gate bias VGS 
from decaying to zero at shutdown. 

Additionally, the combination of the supply bypass capacitor 
Cbypass and the switching transistor’s “on” resistance (typically 25 
to 200 Ω4) can also slow down the switching speed, particularly 
if a large value of Cbypass is chosen to effectively suppress sup-
ply transients. Because of these unavoidable time constants, an 
externally switched MMIC LNA will be limited in switching 
speed. Typical switching speeds range from 1 to 4 μs (Fig. 1).5

The MMIC is fabricated by means of a proprietary 0.25-μm 
enhancement-mode pseudomorphic high-electron-mobility-
transistor (ePHEMT) process on 6-in. wafers.6,7 The MMIC 
integrates dual amplifiers, adjustable active biasing, and shut-
down functions housed in a 16-pin 4 × 4 × 0.85 mm quad-flat-
no-lead (QFN) package.8,9 A cascade configuration (Q4-5) was 
chosen for the amplifier because one common-source stage can-
not meet the target gain at S-band (Fig. 1). 

The cascade configuration’s bottom gate is biased by a tem-
perature-compensated voltage reference and the top gate is 
biased by a resistor divider. During shutdown, both gates are 
disconnected from their respective biasing sources by internal 
transistor switches. Because gate current is in the microampere 
range, small switching transistors can be used for this purpose. 
Although interrupting either one of the two gate supplies is suf-
ficient to shut down the cascade amplifier configuration, switch-
ing both gates simultaneously improves the forward isolation 
and the switching speed of the LNA switch function. 

Because the switches are fabricated on the same high-speed 
process as the RF amplifier, their propagation delays are small 
in comparison to the overall switching time. On the other hand, 

the RC components, required to bias and decouple 
the cascode gates, can slow down the switching speed 
through their time constants. Since the biasing com-
ponents are necessary, the only way to mitigate their 
effect on the switching speed is to choose the smallest 
usable values for capacitances C1 and CG2 and the 
connected resistances. 

In contrast to the externally switched example 
(Fig. 1), the monolithic integrated shutdown func-
tion permits large-value capacitances to be used for 
bypassing the supply (e.g., C8 and C23) without sac-
rificing switching speed; larger value capacitances 
confer greater immunity to supply transients.10 The 
cascode’s input and output impedances are matched 
by L1 and C3 and L3 and C9, respectively. These com-
ponents form highpass LC networks and are dimen-
sioned for operation at 2.6 GHz, i.e., the UMTS VII 
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2. This monolithic integration of the LNA shutdown function 

reduces the parts count and the switching time. 

1. This shutdown function can be adapted to any LNA by inserting a 

switch into the supply line, but it will be limited to switching speed of 

no faster than 1 μs. 



86 DECEMBER 2014   MICROWAVES & RF

band.11 The supply voltage Vdd is +4.8 VDC and the current is 
about 55 mA.

The prototype LNA was assembled on 10-mil-thick Rogers 
RO4350B printed-circuit-board (PCB) material from Rogers 
Corp. (www.rogerscorp.com), where 50-Ω microstrip traces are 
0.58 mm wide (Fig. 3). The RO4350B material has a dielectric 
constant of typically 3.48 in the z-direction at 10 GHz. An FR-4 
backing layer provides rigidity and increases the stack height to 
1.6 mm to suit edge-launch SMA receptacles. 

MAKING MEASUREMENTS

The time taken to switch from one LNA state to another has 
been variously referred to as “switching time/speed/rate” and 
“power settling time” due to absence of a standardized terminol-
ogy. The turn-on time, tON, is measured from 50% of the control 
signal to 90% of the final output amplitude.12,13 The turn-off 
time, tOFF, is similarly defined. The setup (Fig. 4) for evaluating 
the LNA switching speed follows13 An RF signal generator feeds 
the LNA with a 2.6 GHz, 0-dBm carrier. 

A pulse generator provides the logic-level control signal for 
the switches. The envelope of the amplified carrier is detected by 
a low-barrier Schottky diode detector. The output of the detec-
tor is loaded with a 50-Ω feedthrough resistor to quicken its 
response time to between 8 and 12 ns.14 

As part of the switched-LNA test setup, an oscilloscope dis-
plays the detected envelope and the control signal; the rising/ 
falling edge of the control signal triggers the oscilloscope. 
Although a spectrum analyzer can replace the combination of a 
diode detector and an oscilloscope, the latter was selected for its 
fast response time compared to a spectrum analyzer.15 

Measurements of the prototype switched LNA show it to 
exhibit the fastest turn-on and turn-off times in the industry 
(Table 1).16-21 Since the LNA’s switch control signal was used to 
trigger the oscilloscope, the t = 0 positions in both oscilloscope 
graphs (Figs. 5 and 6) represent the midway point (50%) of its 
falling/rising edge. To “wake up” the dormant LNA, the control 
signal, Vsd, transitions from high to low (Fig. 5). The detected 
envelope, RFout, which rises from 0 V to about 210 mV, corre-
sponds to the change in the LNA’s output amplitude. The experi-
mental on time, tON, is 0.05 μs.

To shut down the LNA, the control logic voltage, Vsd, changes 
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TABLE 2: SIZING UP OTHER KEY SWITCHED 
LNA PERFORMANCE PARAMETERS

Gain (dB)
Noise 
figure 
(dB) 

Power at 1-dB 
compression

(dBm)

Third-order
intercept point 

(dBm)

18.4 0.6 +18.0 +33.0

3. Two independent LNAs with shutdown functions fit on this 

compact PCB. 

4. This simple block diagram shows the test setup for measuring the 

LNA’s switching speed. 
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5. The prototype switched LNA exhibited turn-on time of only 0.05 μs. 
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level from “LOW” to “HIGH” (Fig. 6). Correspondingly, the 
detected envelope, RFout, decreases from about 200 mV to 0 V. 
Referenced to the control-signal midpoint, the detected envelope 
(RFout) requires 0.02 μs to drop to 10% of its maximum value. 

The actual tOFF time is most likely faster than the experimental 
value of 0.02 μs because it is very close to the diode detector’s 
specified response time (≤0.012 μs). In addition to speed, the 
prototype switched LNA exhibited excellent performance levels 
in various other parameters, as detailed in Table 2. 

In conclusion, this integration of the shutdown function with 
the LNA circuitry avoids the high current levels and slower 
speeds associated with external switching solutions. A combina-
tion of fast pHEMT technology, dual switches, and optimum 
circuit connections enable this design to be more than one order 
magnitude faster than its closest competitor. 
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6. The prototype switched LNA demonstrated turn-off time of only 

0.02 μs. 
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