Design Feature

SHAOJIANG LIN | Professor QINIAN SHI | Professor *School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, People's Republic of China, e-mail: 1527762155@qq.com*

CCCDTAs Form Flexible Biquad Filter

Through the use of current-controlled, current-differencing transconductance amplifiers (CCCDTAs) and a pair of capacitors, this resistorless universal biquad filter can achieve all basic filtering functions.

F ilters have long been instrumental in cleaning and sorting signals. Likewise, the concept of a "universal" filter has long intrigued designers in search of flexible signal-processing solutions. In quest of that universal filter, which is a circuit that can realize all basic filtering functions, a transadmittance-mode (TA-M) universal biquad filter has been developed based on current-controlled, current-differencing transconductance amplifiers (CCCDTAs).

In a configuration with two CCCDTAs, two capacitors, and no resistors, this filter can realize all standard filtering functions. Among these are lowpass-filter (LPF), highpass-filter (HPF), bandpass-filter (BPF), bandstop-filter (BSF), and even allpass filter (APF) responses using the same circuit structure. The design also offers great convenience, via electronic tuning

1. A current-controlled, currentdifferencing transconductance amplifier (CCCDTA) is represented by (a) this symbol and (b) this equivalent circuit.

and electronically adjusted by means of bias currents to the CCDTAs. Since the CCCD-TAs exhibit high input and output impedances, this flexible filter does not require impedance matching when cascaded with other circuits.

Analog filters have long been essential building blocks for electronic design.^{1,2} In recent years, a variety of current-mode (CM) and voltage-mode (VM) filter circuits have been developed with active devices, such as operational transconductance amplifiers (OTAs), current conveyors (CCs), and current differencing transconductance amplifiers (CDTAs). In many electronic systems, the use of voltageto-current interface circuits is essential, since CM and VM circuits in these systems must be connected. In the process of making these voltage-to-current interfaces, it is also possible to realize signal processing,

of center frequency, quality factor (Q), and bandwidth. The TA gains of LPF, BPF, and HPF functions can be independently such as filtering, and the TA-M filter is a tremendous boost for these situations.³

2. This block diagram shows a BJT-based CCCDTA.

3. This block diagram shows a CCCDTA-based TA-M universal filter.

A number of TA-M filter studies have been published.3-14 Unfortunately, all of these design efforts suffer from various shortcomings. Since a novel active-element design was first reported as a CCCDTA,15 a wide range of CCCDTAbased applications have been realized.15-24 The present design offers simplicity, electronic tenability, and high out-

put impedance for versatility. Its parasitic resistance at two current input ports can be controlled by input bias current. As a result, in some circuit designs, there is no need for additional resistors to create an integrator circuit.

By exploring the capabilities of these CCCDTA designs, it was possible to create a novel TA-M universal biquad filter using CCCDTAs. The proposed circuit employs two CCCDTAs and two capacitors, one of which is permanently grounded. The circuit topology is suitable for integrated-circuit (IC) fabrication. With its three voltage input terminals and single current output terminal, the circuit can realize all standard filtering functions. Key parameters can be controlled by adjusting different bias currents for the CCCDTA.

The new CCCDTA design has been simulated with commercial software, and the simulations agree closely with theoretical analysis of the design. The *table* presents a comparison of the new design with previously published TA-M filters. This new design approach reduces the number of active and passive circuit elements required and overcomes some of the limitations of the earlier designs.

In general, a CCDTA can be represented by the diagram of *Fig. 1(a)* and the equivalent circuit of *Fig. 1(b)*. The matrix of Eq. 1 portrays the CCCDTA's terminal relationships:

4. These gainfrequency curves represent TA-M LPF, BPF, and BSF responses.

$$
\begin{bmatrix} V_p \\ V_n \\ I_z \\ I_{xz} \end{bmatrix} = \begin{bmatrix} R_p & 0 & 0 & 0 \\ 0 & R_n & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & \pm g_m \end{bmatrix} \begin{bmatrix} I_p \\ I_n \\ V_x \\ V_z \end{bmatrix}
$$
 (1)

where:

 z and $x =$ current output terminals, which have high output p and $n =$ positive and negative current input terminals with
finite resistances P , and P , respectively at these terminals. β and $n =$ positive and negative current input terminals;
finite resistances R_p and R_n , respectively, at those terminals; impedance;

tance gain, which can be tuned by usir g_m = the transconductance gain, which can be tuned by using the external bias current of the CCCDTA;

 V_Z = the voltage drop at terminal Z, which is turned into a cur v_Z = the voltage drop at terminar Z , which is turn
rent output by means of a transconductance stage.

rent differencer consists of bipolar transistors Q_1 through Q_{42} . versal filter.²⁴ The circuit is comprised of a current-controlled current differencer and a multiple-output operational transcon-*Figure 2* presents a realization of a proposed CCCDTA uniductance amplifier (MO-OTA). The current-controlled cur-Bipolar transistors Q_{43} through Q_{54} form an MO-OTA, which

6. These plots show TA-M BPF responses for different values of I_{B23}.

is composed of transconductance circuits and multiple-output current mirror circuits. The transconductance gain and input resistance at two current input terminals (the p and n ports) can be directly controlled by the diverse bias currents of the CCCDTA, allowing for flexibility and versatility in many different analyzed ent applications. *p* **I** l

In this CCCDTA design, resistances R_p and R_n and transconductance g_m can be expressed by means of Eqs. 2-4: \overline{a} A design, resistances R_p and $\frac{1}{2}$ and $\frac{1}{n}$ and $\frac{1}{n}$
can be expressed by means of Eqs. 2-4 \cdot \overline{a} CDTA design, resistances R_p and R *z* ..
DTA design, resistances R_p and R_n and transcon $\frac{1}{18}$. 2-4 $\mathbf{I}^{\mathcal{S}}$ $\frac{1}{2}$ expressed by means of Eq. 29 ns.
CDTA design, resistances R_p and R
can be expressed by means of Eqs. 2 can be $\ddot{}$ ± *z x* an be expressed by means of Eqs. 2- $\frac{1}{2}$ *D* I A design, resistances R_F ign, resistances R_p and R_n and transcon- \mathbf{S} . 2-4 d \mathbf{r} e expressed by means of Eq. ⎥ $\ddot{ }$ −
− design, res can be CDTA design, resistances R_p and R *x* and by means of Eqs. 2 *I R I* s.
DTA design, resistances R_p and R_n and transcon[.] 811, resistances rep

$$
R_{P} = \frac{V_{T}}{2I_{B1}}\tag{2}
$$

$$
R_n = \frac{V_T}{2I_{B2}}
$$
 (3)

$$
g_{m} = \frac{I_{B3}}{2V_{T}}
$$
 (4)

where:

where:
V_T = the thermal voltage, and s V sV /C R V g /C C R

 V_T = the thermal voltage, and
 I_{B1} , I_{B2} , and I_{B3} = the bias currents of the CCCDTA.

Figure 3 shows a circuit diagram of the designed transadssive elements for the design.

1, the filter design is also quite active and passive elements for the design. With its resistorless
configuration, the filter design is also quite suitable for monomittance filter. From the diagram, it can be seen that a TA-M connguration, the niter design is also quite suitable for mono-
lithic integration. Using Eqs. 1-4, the characteristic equations of the filter design is also quite suitable for monoactive and passive elements for the design. With its resistorless
configuration, the filter design is also quite suitable for monouniversal filter is relatively easy to realize by adopting minimum *Fig. 3* are:

7. These plots show TA-M LPF responses
for different values of I_{B21} . or different values of I_{B21} . or different values of I_{B21} . for different values of I_{B21} .

8. These plots show TA-M BPF responses for different values of I_{B12} .

$$
I_{out} = g_{m1} \frac{s^2 V_1 - sV_2 / C_1 R_{1n} + V_3 g_{m2} / C_1 C_2 R_{2p}}{\Delta(s)}
$$
 (5)

^m 2V

0 0 0

± *z*

^P 2I

R

 \overline{a} ⎥ $\ddot{}$ j $\ddot{}$

⎢

x

V

⎢

⎥

$$
\Delta(s) = s^2 + s g_{m1} / C_1 + g_{m1} g_{m2} / C_1 C_2
$$
 (6)

T

m

⎢

I

⎥

⎥ $\ddot{}$ j $\ddot{}$ \overline{a}

⎥

where:

where.
 R_{in} = the finite negative input resistance of the CCCDTA, and R_{in} R_{ip} = the finite positive input resistance of the CCCDTA.
 R_{ip} = the finite positive input resistance of the CCCDTA. put resistai put resistance of the CCCDTA, and

Through analysis of *Fig.* 3 and Eqs. 5 and 6, the five currentcan be obtained in the following ways. The LFF response c_6 achieved by means of Eq. 7 when $V_3 = V_{in}$ and $V_1 = V_2 = 0$: transfer functions for the LPF, BPF, HPF, BSF, and APF responses
can be obtained in the following ways. The LPF response can be Through analysis of Tig. 5 and Eqs. 5 and 6, the two current-
transfer functions for the LPF, BPF, HPF, BSF, and APF responses (-)
d
ent-
nses Finite positive in particularities of the SSSD 11.
gh analysis of *Fig.* 3 and Eqs. 5 and 6, the five current-
inctions for the LPE BPE HPE BSE and APF responses Frier functions for the LPF, BPF, HPF, BSF, and APF!
De obtained in the following ways. The LPF resport $\frac{1}{2}$ when $\frac{1}{2}$

$$
T_{LP}(s) = \frac{I_o(s)}{V_{in}(s)} = \frac{g_{m1}g_{m2}/C_1C_2R_{2p}}{\Delta(s)}
$$
(7)

 $\begin{array}{c} \mathbf{v}_{\text{in}}(\mathbf{s}) \\ \end{array}$ The BPF response can be achieved by means of Eq. 8 when \mathbf{V}_2 I (s) $V_1 = V_3 = 0$: $= V_{\text{in}}$ and $V_1 = V_3 = 0$:
 $= V_{\text{in}} = V_3$ sg /C R $V_3 = 0$:
 $I_1(s) = s\sigma_1$ sponse can be achieved by means of Eq. 8 when V_2 E BPF response can be achieved by means of Eq. 8 when V_2 $V_{\rm c}$ (s), $V_{\rm c}$

$$
T_{BP}(s) = \frac{I_o(s)}{V_{in}(s)} = -\frac{sg_{m1}/C_1R_{1n}}{\Delta(s)}
$$
(8)

on can be achieved with the aid of Eq. 9, when
 $\frac{dV}{dr} = 0$. The HPF function can be achieved with the aid of Eq.
 $V_1 = V_{in}$ and $V_2 = V_3 = 0$: $v_{\text{in}}(s)$
The HPF function can be achieved with the aid of Eq. 9, when $V_1 = V_{12}$ and $V_2 = V_3 = 0$: \cdot \cdot function can be achieved with the aid of Eq. 9, where $W = V = 0$.

$$
T_{HP}(s) = \frac{I_o(s)}{V_{in}(s)} = \frac{s^2 g_{m1}}{\Delta(s)}
$$
(9)
The BSF response can be gained with the help of Eq. 10 and
then I = I, and V = V = V :

bonse can be gained with the he
and $V = V - V$. $\mathbf{V}_1 = \mathbf{V}_2 = \mathbf{V}_1$. $V_{\text{in}}(\text{s})$ $\Delta(\text{s})$
3SF response can be gained with the help of Eq. 10 and The BST response can be gained what the help of Eq.
when $I_{B12} = I_{B13}$ and $V_1 = V_3 = V_{in}$: $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\begin{array}{ccc} \text{I} & \text{I} & \text{I} \end{array}$

$$
T_{BS}(s) = \frac{I_o(s)}{V_{in}(s)} = \frac{g_{m1}(s^2 + g_{m2}/C_1C_2R_{2p})}{\Delta(s)}
$$
(10)

The APP response can be achieved with the help of Eq.

when $I_{B12} = I_{B13} = I_{B21}$ and $V_1 = V_2 = V_3 = V_{in}$: The APF response can be achieved with the help of Eq. 11 and $\frac{1}{1}$ The APF response can be achieved with the help of Eq. 11 and

$$
\Gamma_{AS}(s) = \frac{I_o(s)}{V_{in}(s)} = \frac{g_{m1}(s^2 - 1/C_1R_{1n} + g_{m2}/C_1C_2R_{2p})}{\Delta(s)}
$$
(11)

ection of different $\overline{}$ election of different input signals. It is also From Eqs. 7-11, it is evident that rig. 5 provides second-order
LPF, BPF, HPF, BSF, and APF responses from the same circuit From Eqs. 7-11, it is evident that Fig. 3 provides second-order $\frac{1}{2}$ $\frac{1}{2}$ the selection of different input $\frac{1}{10}$ er
cc $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ in the selection of different input signals. It is also

These properties are served in the server of $\frac{1}{B13}$.

for different values of $\frac{1}{B13}$.

apparent that there is no need for an external inverter and a $\frac{1}{2}$ of $\frac{1}{2}$ $\frac{1}{$ apparent that there is no need for an external inverter and a
matching element to realize BS and AP filters. The parameters
of ω_0 . O and ω_0 /O (bandwidth) for the proposed filter can be matching element to realize BS and AP filters. The parameters
of ω_0 , Q, and ω_0/Q (bandwidth) for the proposed filter can be found from Eqs. $12-14$: apparent that there is no need for an external inverter and a
matching element to realize BS and AP filters. The parameter $\mathcal{L}_{\mathbf{r}}$ () and () an \mathcal{L} -14. $I = \frac{1}{2}$ ω_0 /Q (bandwidth) for the proposed filter can b
las. 12-14: $\frac{1}{2}$ found from Eqs. 12-14: \overline{A} t there is no need for an e

2

o $\frac{1}{\sqrt{2}}$

in

V (s)

$$
\omega_{o} = \sqrt{\frac{g_{m1}g_{m2}}{C_{1}C_{2}}} = \frac{1}{2V_{T}} \sqrt{\frac{I_{B13}I_{B23}}{C_{1}C_{2}}}
$$
(12)

 $\overline{}$ () and (g s g /C C R

 $\overline{}$

(s)

s g

(10)

 $\overline{}$

$$
Q = \sqrt{\frac{g_{m2}C_1}{g_{m1}C_2}} = \sqrt{\frac{I_{B23}C_1}{I_{B13}C_2}}
$$
(13)

$$
BW = \frac{\omega_0}{Q} = \frac{g_{\text{ml}}}{C_1} = \frac{I_{\text{B13}}}{2C_1V_{\text{T}}}
$$
(14)

 $BW = \frac{\omega_0}{Q} = \frac{g_{m1}}{C_1} = \frac{I_{B13}}{2C_1V_T}$ (14)
It is clear that all of the characteristic parameters of this filter
can be electronically tuned by CCCDTA bias currents. Also,
 ω_0 and O can be adjusted electronicall It is clear that all of the characteristic parameters of this filter $\frac{1}{2}$ means of I_{B23} without obstructing the value of ω_0/Q . ω_0 and Q can be adjusted electronically and independently by $(1, 4)$ It is clear that all of the characteristic

the transadmittance gain of the LPF, BPF
can be calculated by means of Eqs. 15, 16 ne transadmittan zans of I_{B23} without obstructing the value of ω_0 /Q.
By using Eqs. 7-9, the transadmittance gain of the LPF, BPF, and HPF responses can be calculated by means of Eqs. 15, 16, and 17 respectively: and 17, respectively:

$$
G_{LP} = \frac{1}{R_{2p}} = \frac{2I_{B21}}{V_T}
$$
 (15)

$$
G_{BP} = \frac{1}{R_{In}} = \frac{2I_{B12}}{V_T}
$$
(16)

$$
G_{HP} = g_{m1} = \frac{I_{B13}}{V_T}
$$
(17)

$$
G_{HP} = g_{m1} = \frac{I_{B13}}{2V_{T}}
$$
 (17)

z V_T ee expressions, it is easy to see that the transdifferent bias currents: I_{B21} , I_{B12} , and I_{B13} . The lowpass and band-
necessaries C_1 and C_2 respectively seen he independently independently and electronically modified by adjusting the transformed by means of bias currents I_{B21} and I_{B12} , respectively,
without the poly-frequency and bandwidth of the particular
flamences admittance gains of the LP, BP, and HP filter functions can be pass gains— G_{LP} and G_{BP} respectively—can be independently
transformed by means of bias currents I_{B21} and I_{B12} , respectively, From these three expressions, it is easy to see that the transpass gains— G_{LP} and G_{BP} respectively—can be independently filter response.

filter response.
Considering the CCCDTA's nonideal characteristics, its port $\frac{1}{2}$ m *Fig.* 3 can be rewritten as Eq. 1 $\frac{1}{2}$ Lettionship in *Fig. 3* can be rewritten as Eq. 18: $\overline{1}$ $\overline{0}$ $\overline{1}$

$$
i_z = \alpha_p i_p - \alpha_n i_n, i_{xz} = \pm \beta g_m v_z \tag{18}
$$

where:

where:
\n
$$
\alpha_{pi} (\alpha_{pi} = 1 - \varepsilon_{pi} | \varepsilon_{pi}| << 1) \text{ and } \alpha_{ni} (\alpha_{ni} = 1 - \varepsilon_{ni} | \varepsilon_{ni}| << 1)
$$

2 of property and $\alpha_{\text{h1}}(\alpha_{\text{h1}})$ 1 α_{h2} (eq. 1) h CCCDTA, respectively, and are parasitic current gains between $p \rightarrow z$ and $n \rightarrow z$ terminals of the ith CCCDTA, respectively, and the ith CCCDTA, respectively, and
 $\beta: (\beta_i = 1 - \varepsilon_i, |\varepsilon_i| < \beta$ =

$$
\beta_i (\beta_i = 1 - \epsilon_i, |\epsilon_i| << 1)
$$

10. This is the TA-M APF response for a sinewave input signal.

is the parasitic transconductance tracking error from the z to the x terminals.

x terminals.
The circuit in Fig. 3 was reanalyzed by using Eq. 18. The modi-
fied current transfer characteristic is approximated by Eq. 19. fied current transfer characteristic is approximated by Eq. 19:

$$
\Delta(s) = s^2 + s\beta_1 \alpha_{\rm pl} g_{\rm ml} / C_1 + \alpha_{\rm pl} \alpha_{\rm n2} \beta_1 \beta_2 g_{\rm ml} g_{\rm m2} / C_1 C_2 \tag{19}
$$

From Eq. 19, the nonideal values of ω_0 and Q for the universal filter can be expressed by means of Eqs. 20 and 21, respectively:

$$
\omega_0 = \sqrt{\frac{\alpha_{\rm p1} \alpha_{\rm n2} \beta_1 \beta_2 \mathbf{g}_{\rm m1} \mathbf{g}_{\rm m2}}{C_1 C_2}}
$$
(20)

$$
Q = \sqrt{\frac{\alpha_{nl}g_{m2}C_1}{\alpha_{pl}\beta_1g_{ml}C_2}}
$$
 (21)

ensitivities of the active and pa
ound by means of Eqs. 22 and 23 α The sensitivities of the active and passive components to ω_0 found by means of Eqs. 22 and 23: sensitivities of the active and pas
found by means of Eqs. 22 and 23: e found by means of Eqs. 22 and 23: , can be found by means of Eqs. 22 and 23:

11. The linearity of the TA-M filter can be gauged by its low THD.

$$
S_{\alpha_{p1},\alpha_{n2},\beta_1,\beta_2}^{\omega_0}, g_{\alpha_{p1},g_{m2}} = 0.5 \, \, \zeta_{C_1,C_2}^{\omega_0} = -0.5 \qquad (22)
$$

$$
S^Q_{\alpha_{n1}, g_{m2}, C_1} = 0.5^{\prime} S^Q_{\alpha_{p1}, \beta_1, g_{m1}, C_2} = -0.5
$$
 (23)

It can be noted from Eqs. 22 and 23 that all sensitivities of the passive and active elements of the proposed TA-M filter do not exceed 50% in magnitude.

It was possible to simulate a TA-M filter as portrayed in *Fig. 3* by using the CCCDTA in *Fig. 2* simulated with the parameters of the PR200N and NR200N bipolar transistors of the ALA400 transistor array from AT&T in a PSPICE simulator.25 The power supplies were set as $V_{DD} = -V_{SS} = 1.5$ V.

The universal filter was designed using passive component values of $C_1 = C_2 = 1$ nF. Bias currents for the CCCDTAs were chosen as $I_{B11} = I_{B22} = 500 \mu A$ (for $R_{1p} = R_{2p} = 20 \Omega$); $I_{B12} = I_{B21} =$ 100 μA; and $I_{B13} = I_{B23} = 100$ μA (for $g_m = 1.2$ mS). Using Eq. 12, a polyfrequency of 190 kHz was achieved through these values. By selecting different input signals, it was possible to achieve simulated responses for LPF, BPF, HPF, and BSF functions *(Fig. 4)*. *Figure 5* offers simulated responses for the gain and phase of the APF function.

From *Figs. 4 and 5*, it is apparent that the proposed TA-M filter circuit can realize LP, HP, BP, BS, and AP functions depending upon input signal selection, without modifying the basic circuit framework. By setting different I_{B23} values, the different BPF magnitude responses of *Fig. 6* can be achieved. It is clear that the polyfrequency and Q of the filter can be adjusted electronically. The electronic tuning of gain for LPF, BPF, and HPF responses are achieved by changing bias currents from 50 to 150 μA while maintaining $C_1 = C_2 = 1$ nF, as shown in *Figs. 7 through 9*.

To test the large-signal behavior of the TA-M filter, a sinusoidal input at 190 kHz and 0.5 V was applied to the APF function with the circuit elements as established previously. *Figure 10* shows the results of the output transient response, while the total harmonic distortion (THD) is presented in *Fig. 11*.

In short, this is a single circuit that can be electronically tuned for different filter responses, and it can realize all standard filtering functions. Being completely without resistors, it is well suited for IC fabrication. $\overline{\text{mw}}$

Note: For references, see the online version of this article at www. mwrf.com.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their valuable comments and helpful suggestions. This work is supported by the foundation of outstanding youth science and technology innovation team of the Hubei Polytechnic University (No. 13xtx02) and the project planning of young teachers in enterprises of the Hubei Province (No. XD2014681), both of the People's Republic of China (PRC).

