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A
dvances in materials have been the springboard 
to enhancements in higher-frequency circuits 
and higher-efficiency, more compact circuits. 
As an example, the use of composite right/left-

handed (CRLH) metamaterial transmission lines has made 
possible a miniature multiple-band resonator with frequencies 
extending from 2.8 to 10.4 GHz and high selectivity between 
the resonant circuit structures. In addition, the resonant struc-
tures have closely matched return losses. 

The multiple-band resonator is fabricated on standard 
commercial circuit material with dielectric constant of 3.55 
and thickness of 1.52 mm. It consists of a CRLH unit cell plus 
an additional series-connected resonant circuit that tunes 
the overall structure and provides the third frequency band. 
The resonator measures just 16.5 × 18.9 mm2 and delivers 
the multiple frequencies and compact size required for many 
modern communications circuit designs. 

The steady expansion of wireless functions creates the 
need for denser high-frequency circuitry in smaller circuit 
sizes. CRLH circuitry has been shown as an effective means 

of shrinking the size of planar microwave components,1 with 
even greater circuit density and miniaturization possible using 
dual (D-CRLH) circuit structures.2 The two types of circuit 
configurations have been employed as filters, duplexers, 
diplexers, couplers, and power dividers in much smaller sizers 
than possible with conventional microstrip and stripline high-
frequency transmission-line circuitry.3-5

For multiple-frequency-band applications in 
communications systems, CRLH transmission-line (CRLH-
TL) resonators offer numerous advantages over traditional 
TL resonators because they have three branches in a half-
periodicity configuration.2 To enhance the bandwidth of the 
compact resonators, U-folded resonators3 and multimode 
resonators4-6 were developed, too. 

Multiple-band resonators had been built previously, serving 
as a starting point for the current design,7 while stepped-
impedance resonators were also developed to produce 
multiple frequency bands.8,9 Unfortunately, the performance 
of these multiple-band stepped-impedance resonators was 
limited and, to improve the spectral purity of these multiple-
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band resonators, the small size of the initial design was 
sacrificed for an improvement in performance. 10,11

The researchers’ current work consists of a new resonator 
structure in which a gap-coupled microstrip resonator 
optimizes the use of tuning an additional tuner with a CRLH 
cell. This achieved three resonant frequencies/bands with 
simple control of the center frequencies and bandwidths. 
By using the CRLH transmission line, resonator length can 
be decreased to less than one-quarter wavelength at each 
frequency of interest, while maintaining good spectral 
performance. 

Fig. 1a shows the layout of the CRLH triple-band line 
resonator in comparison to a traditional coupled-gap 
resonator in Fig. 1b. The triple-band resonator consists of a 
CRLH unit cell with additional tuner circuitry in series. 

The CRLH cell is 
designed to operate at two low-frequency bands of 2.8 and 4.0 
GHz, as shown by the S-parameters in Fig. 2a. The additional 
series circuitry tunes the operating bands of the CRLH 
resonator as well as the third frequency band at 10.4 GHz (Fig. 
2b). The input and output ports are coupled by means of the 
small gap capacitor connected to the CRLH circuitry. 

The novel three-frequency design features low losses, with 
insertion loss equivalent to 3 dB at the first resonator band 
of 2.8 GHz, 1.5 dB at the second resonator band of 4 GHz, 
and 1.7 dB at the third resonator band of 10.4 GHz. The 
three-frequency resonator’s measured (S21) performance is 
compared to simulated (S21 and S11) responses in Fig. 3. 

One step in designing the CRLH unit cell involves 
determining the value of n in Eq. 1 related to resonator phase:

Figure 3
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Phase = -βL = nπ                                (1)

where:
L = the total physical length of the resonant transmission 

lines
n = a constant
β = a propagation constant

Fig. 4 shows an equivalent circuit for the three-frequency 
CRLH resonator deduced from its physical behavior. The LR 
section is equivalent to a microstrip feed line, while the gap 
is equivalent to the gap capacitor, Cgap. Parameters CL1, LR1, 
LL, and CR are equivalent to the capacitances and inductances 
of the CRLH circuit cell. Capacitance CL2 and inductance LR2 
represent the additional series tuning branch. 

In the three-frequency CRLH resonator, the first and 
second resonances are produced by the CRLH cell, with key 
circuit values for the two lower-frequency resonances, f1 and 
f2,  calculated by Eqs. 2 and 3, respectively:

  
f1 = 4π(CL1LR1)0.5                                         (2)

f2 = 1/π(CRLL)0.5                                          (3)

TUNING HIGHER

The third resonance frequency in the circuit, f3, is achieved 
by tuning the interdigital capacitor, where low values of 
capacitance and inductance are 
used to obtain the third frequency 
band with a higher frequency. 
Equation 4 is used to determine the 
key circuit parameters: 

f3 = 1/2π(CL2LR2)0.5                                  (4)

The loaded quality factor of the three-frequency resonator, 
QL, can be found by applying Eq. 5: 

QL = f0/f3dB                 (5)

where:
f0 = the resonant frequency 
f3dB = the 3-dB bandwidth surrounding the resonant 

frequency 

The 3-dB bandwidth of the resonator insertion loss for the 
first band is 0.0302 GHz, 0.1104 GHz for the second band, 
and 0.199 GHz for the third band. The quality factors (Q) 
for the three bands are 92.7, 36.2, and 52.26, respectively. In 
comparison to the traditional gap-line resonator of Fig. 1b, the 
three-band resonator achieves much improved Q, since the Q 
of a traditional coupled-gap resonator (Fig. 2b) is relatively 
low, at 6.93. 

COMPACT RESONATOR

Fig. 5 shows a three-frequency CRLH resonator constructed 
with a CRLH transmission line and a conventional microstrip 
transmission line. The resonator is fabricated on commercial 
printed-circuit-board (PCB) material from Rogers Corp. 
(www.rogerscorp.com) with dielectric constant of 3.55 and 
thickness of 1 mm. The circuit material is laminated with 
0.035-mm-thick copper foils on both sides of the dielectric 
material. The distance between the CRLH and microstrip 
transmission lines is 0.3 mm. 

This miniature triple-frequency resonator represents an 
example of how this transmission-line technology can be 
applied to produce multiple signal frequencies while also 
miniaturizing the circuitry. The novel CRLH structure 
used in the three-frequency resonator is designed with one 
cell consisting of two patch capacitors for the two lower-
frequency bands and an additional series-connected circuit 
branch to produce the third, higher-frequency resonance. 
The frequencies in this resonator are easily controlled and 

tuned, with low insertion loss and 
reasonable values of return loss, 
suggesting that the design approach 
has promise for use across a wide 
range of resonator frequencies. 
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