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W
ith the proliferation of digital phased 
arrays in commercial as well as aerospace 
and defense applications, there are many 
engineers working on various aspects 

of the design who have limited familiarity with phased-array 
antennas. Phased-array antenna design isn’t new, as the theory 
has been well developed over decades. Most of the literature, 
though, is intended for antenna engineers who are proficient 
with the electromagnetic mathematics. 

However, as phased arrays begin to include more mixed-
signal and digital content, many engineers could benefit from 
a much more intuitive explanation of phased-array antenna 
patterns. As it turns out, many analogies exist between the 
behavior of phased-array antennas and the discrete time-sam-
pled systems that the mixed-signal and digital engineers work 
with every day.

Beam Direction
First, let’s look at an intuitive example of steering a phased-

Phased-Array Antenna 
Patterns (Part 1)—Linear-
Array Beam Characteristics 
and Array Factor
In this first of three articles, learn some of the basics of phased-array antenna patterns, 
starting with the simpler example of a linear array.

1. This example of beamsteering shows a wavefront striking four antenna elements from two different directions. 
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array beam. Figure 1 provides a simple illustration of a wave-
front striking four antenna elements from two different direc-
tions. A time delay is applied in the receive path after each 
antenna element, and then all four signals are summed together. 
In Figure 1a, that time delay matches the time difference of the 
wavefront striking each element. And in this case, that applied 
delay causes the four signals to arrive in phase at the point of 
combination. This coherent combining results in a larger signal 
at the output of the combiner.

In Figure 1b, that same delay is applied. But in this case, the 
wavefront is perpendicular to the antenna elements. That ap-
plied delay now misaligns the phase of the four signals, signifi-
cantly reducing the output of the combiner.

In a phased array, time delay is the quantifiable delta needed 
for beamsteering. But time delay can also be emulated with a 
phase shift, which is common and practical in many imple-
mentations. We will discuss the impact of time delay vs. phase 
shift in the section on beam squint. For now, though, let’s look 
at a phase-shift implementation, and then derive the calcula-
tion for beamsteering with that phase shift.

Figure 2 shows this phased-array arrangement using phase 
shifters rather than time delay. Note that we define the bore-
sight direction (θ = 0°) as perpendicular to the face of the an-
tenna. A positive angle θ is defined to the right of boresight, 
and a negative angle is defined to the left of boresight.

To visualize the phase shift needed for beamsteering, a set of 
right triangles can be drawn between adjacent elements (Fig. 
3), where ΔΦ is the phase shift between those adjacent ele-
ments.

Figure 3a defines the trigonometry between those elements, 
with each element separated by a distance (d). The beam is 
pointed in a direction off boresight, θ, which is an angle, φ, 
from the horizon. In Figure 3b, we see that the sum of θ + φ 

= 90°. This allows us to compute L, the delta distance of wave 
propagation, as L = dsin(θ). The time delay to steer our beam 
is equal to the time it will take for the wavefront to traverse 
that distance, L. 

If we think of L as a fraction of the wavelength, then a phase 
delay could be substituted for that time delay. The equations 
for ΔΦ can thus be defined relative to θ, as shown in Figure 3c, 
and repeated in Equation 1:

If the spacing between elements is exactly one half of the 
signal wavelength, then this can further be simplified to:

Let’s work out an example with these equations. Consider 
two antenna elements spaced 15 mm apart. If a 10.6-GHz 
wavefront is arriving at 30º from mechanical boresight, then 
what’s the optimal phase shift between the two elements?

• θ = 30º = 0.52 rad
• λ = c/f = (3 × 108 m/s)/10.6 GHz = 0.0283 m
• ∆Φ = (2π × d × sinθ)/λ = 2π × 0.015 × sin(0.52)/0.0283 m 

= 1.67 rad = 95º
So, if our wavefront is arriving at θ = 30º, and we then shift 

the phase of the neighboring element by 95º, we will cause the 
individual signals of both elements to add coherently. This will 
maximize the antenna gain in that direction.

For a better appreciation of how the phase shift varies with 
the beam direction (θ), these equations are plotted for a variety 
of conditions in Figure 4. Some interesting observations can be 

made from these graphs. 
For the case of d = λ/2, there’s an ap-

proximate 3 to 1 slope near boresight, 
which is the π multiplier in Equation 2. 
This case also shows a full 180° shift be-
tween elements, which provides a theo-
retical 90° shift in beam direction. In 
practice (with real element patterns), 
this isn’t realizable; yet, the equations do 
show the theoretical ideal. Note that for d 
> λ/2, no amount of phase shift provides 
a full beam shift. Later, we will see that 
this case can lead to grating lobes in the 
antenna pattern, and this graph provides 
a first indicator that something is differ-
ent with the d > λ/2 case.

A Uniformly Spaced Linear Array
The equations developed above have 2. This phased-array arrangement uses phase shifters rather than time delay. 
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applied to just two elements. Yet, a real 
phased array can be thousands of ele-
ments spaced across two dimensions. But 
for now, let’s just consider one dimension: 
a linear array.

A linear array is a single element wide 
with N number of elements across. The 
spacing may vary, but often it’s uniform. 
Therefore, for purposes of this article, 
we will set the spacing between each ele-
ment to a uniform distance, d (Fig. 5). Al-
though simplified, this uniformly spaced 
linear-array model provides the founda-
tion for insight into how the antenna pat-
tern is formed in light of various condi-
tions. We can further apply the principles 
of the linear array to understand two-
dimensional arrays.

Near Field vs. Far Field
So how can we take the equations pre-

viously developed for an N = 2 linear ar-
ray and apply them to an N = 10,000 lin-
ear array? Right now, it seems that each 
antenna element has a slightly different 
angle pointing to the spherical wavefront 
(Fig. 6).

With the RF source near, the incident 
angle varies for each element. This situa-
tion is called the near field. We can work 
out all of these angles, and sometimes we 

need to do this for antenna testing and calibration as our test 
setup can only be so large. 

But if we assume that the RF source is far away (Fig. 7), the 
large radius of the spherical wavefront results in wave propa-
gation paths that are approximately parallel. Therefore, all of 
our beam angles are equal, and each adjacent element has a 
path length that is L = d × sinθ longer than its neighbor. This 
simplifies the math and means that the two-element equations 
we derived earlier can be applied to thousands of elements, 
provided they have uniform spacing.

But when can we make the far-field assumption? How far is 

4. Shown are plots of phase shift (ΔΦ) between elements vs. 
beam direction (θ) for three cases of d/λ.

3. To visualize the phase shift needed 
for beamsteering, a set of right triangles 
can be drawn between adjacent ele-
ments, where ΔΦ is the phase shift be-
tween those adjacent elements.
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far? It’s a little subjective, but in general, far field is considered 
anything greater than:

where D is the diameter of the antenna ((N-1) × d for our 
uniform linear array).

For a small array (small D) or a low frequency (large λ), 
the far-field distance is small. But for a large array (or high 
frequency), the far-field distance could be many kilometers. 
That makes it hard to test and calibrate the array. For such 

conditions, a more-detailed near model may be used, and then 
bridge this back to the far-field, real-world use of the array.

In Part 2, we’ll cover antenna gain, directivity, and aperture, 
as well as array factors.

Authors’ Note: This series of articles is not intended to cre-
ate antenna design engineers, but rather to help the engineer 
working on a subsystem or component used in a phased ar-
ray to visualize how their effort may impact a phased-array 
antenna pattern.
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