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I
n the first three parts of this series, we introduced the 
phased-array steering concept and looked at the influenc-
ers on array gain. In the next two parts, we’ll discuss grat-
ing lobes and beam squint. Grating lobes can be hard to 

visualize, so we’ll draw on their similarity with signal aliasing 
in digital converters, then use that to think of a grating lobe as 
a spatial alias. 

In the upcoming Part 5, we’ll explore the issue of beam 
squint. Beam squint is an unfocusing of the antenna across 
frequency when we use phase shift, instead of a true time de-
lay, to steer the beam. We’ll also discuss the tradeoff between 
these two steering methods and understand the impact of 
beam squint on typical systems.

An Introduction to Grating Lobes
So far, we have only examined the case in which the element 

spacing is d = λ/2. Figure 1 begins to illustrate why an element 
spacing of λ/2 is such a common metric in phased arrays. Two 
cases are shown. First, in blue, we show the same 30° plot from 
Part 3 of this article series. Next, the d/λ spacing is increased 
to 0.7 to show how the antenna pattern changes. 

With this increase in spacing, note the reduction in the 
beamwidth, which is a positive result. The decreased spacing 
of nulls brings them closer together, which is also an accept-
able result. But now there’s a second angle, in this case at –70°, 
where there’s full array gain. This is a most unfortunate result. 
This replica of antenna gain is defined as a grating lobe and 
can be considered spatial aliasing.

Analogy to Sampled Systems
An analogy useful in visualizing grating lobes is to think 

of aliasing in a sampled system. In an analog-to-digital con-
verter (ADC), undersampling is often used when frequency-
planning a receiver architecture. Undersampling involves pur-

posefully reducing the sample rate (fS) such that the sampling 
process translates frequencies above fS/2 (the higher Nyquist 
zones) to appear as aliases in the first Nyquist zone. This 
causes those higher frequencies to appear as if they were at a 
lower frequency at the output of the ADC.

A similar analogy can be considered in phased arrays, 
where the elements spatially sample the wavefront. The Ny-
quist theorem can be extended to the spatial domain if we sug-
gest that two samples—that is, elements—per wavelength are 
required to avoid aliasing. Therefore, if the element spacing is 
greater than λ/2, we can consider this spatial aliasing.

Calculating Where Grating Lobes Appear
But where will these spatial aliases (grating lobes) appear? 

Previously, we showed the phase shift applied to the elements 

Phased-Array Antenna 
Patterns (Part 4)— 
Grating Lobes
This latest installment in the series examines the topic of grating lobes with a focus on 
element spacing.

1. This plot illustrates the normalized array factor of a 
32-element linear array at two different d/λ spacings.
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across the array as a function of beam angle:

Inversely, we can compute the beam angle as a function of 
phase shift:

The arcsin function only produces real solutions for argu-
ments between –1 and +1. Outside of these bounds, the solu-
tion isn’t real—the familiar “#NUM!” in spreadsheet software. 
Also note that the phase in Equation 2 is periodic and repeats 
every 2π. So, we could replace ∆Φ with (m × 2π + ∆Φ) in the 
beamsteering equation to yield Equation 3:

where m = 0, ±1, ±2, …
To avoid grating lobes, our goal is to obtain a single real 

solution. Mathematically, this is accomplished by keeping:

If we do so, then all of the spatial images (that is, m = ±1, 
±2, etc.) will produce nonreal arcsin results, and we can ignore 

them. But if we can’t do this, and therefore some values of m 
> 0 produce real arcsin results, then we end up with multiple 
solutions: grating lobes (Fig. 2).

Grating Lobes for d > λ and λ = 0°
Here are some examples to better illustrate this scenario. 

First, consider the case at mechanical boresight where θ = 0, 
and therefore ∆Φ = 0. Then Equation 3 simplifies to Equation 
5:

From this simplification, it’s evident that if λ/d is > 1, then 
only m = 0 could give an argument that’s bounded between –1 
and +1. And that argument will just be 0, and the arcsin(0) = 
0°, the mechanical boresight angle. So, this is all as we would 
expect. Furthermore, for any m ≥ 1, the arcsin argument will 
be too large (>1) and the resulting answer will not be real. We 
will see no grating lobes for θ = 0 and d < λ!

However, if d > λ (therefore, λ/d is <1), then multiple solu-
tions—grating lobes—could exist. For example, if λ/d = 0.66 
(that is, d = 1.5λ), then real arcsin solutions would exist for m 
= 0 and for m = ±1. That m = ±1 is the second solution, which 
is the spatial aliasing of the desired signal. Therefore, we can 
expect to see three main lobes, each with approximately equal 
amplitude, located at arcsin(0 × 0.66), arcsin(1 × 0.66), and 
arcsin(–1 × 0.66). In degrees, these angles are 0° and ±41.3°. In 
fact, this is what our array factor plot shows in Figure 3.

Grating Lobes for λ/2 < d < λ
In simplifying the grating-lobe equation (Equation 5), we 

chose to only look at mechanical boresight (∆Φ = 0). And we 
saw that, at mechanical boresight, grating lobes would not ap-

3. An array factor plot at boresight for d/λ = 1.5, N = 8 
shows three main lobes at angles of 0° and ±41.3°.

2. Shown is the arcsin function application to grating lobes.
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pear for d < λ. But from our analogy of sampling theory, we 
know that we should also expect to see some kind of grating 
lobe for any spacing greater than λ/2. So where are the grating 
lobes for λ/2 < d < λ?

First, recall how the phase changed with steering angle in 
Figure 4 from Part 1 of this article series. We saw ∆Φ range 
from 0 to ±π as the main lobe deviated from mechanical bore-
sight. Therefore:

will range:

And for |m| ≥ 1, it will always be something beyond:

This restricts the minimum permissible λ/d if we want to 
keep the entire arcsin argument > 1 for all |m| ≥ 1. Consider 
two cases:

If λ/d ≥ 2 (that is, d ≤ λ/2), then you could never have mul-
tiple solutions, regardless of the value of m. All m > 0 solutions 
will result in an arcsin argument > 1. This is the only way to 
avoid grating lobes to the horizon.

But if we purposefully restricted ∆Φ to something less than 
±π, then we could tolerate a smaller λ/d and still not see grat-
ing lobes. Reducing the range of ∆Φ means reducing the max-
imum steering angle of our array. It’s an interesting tradeoff 
that will be explored in the next section.

Element Spacing Considerations
Should the element spacing always be less than λ/2? Not 

necessarily! This becomes a tradeoff for the antenna designer 
to consider. If the beam is steered completely to the horizon, 
then θ = ±90°, and an element spacing of λ/2 is required (if 
no grating lobes are allowed in the visible hemisphere). But in 
practice, the maximum achievable steering angle is always less 
than 90°. This is due to the element factor and other degrada-
tions at large steering angles.

From the arcsin figure (Fig. 2, again), we can see that if the y 
axis, θ, is restricted to a reduced limit, then grating lobes only 
occur at scan angles that aren’t used anyway. What would this 
reduced limit (θmax) be for a given element spacing (dmax)? 
We had said previously that our goal is to keep:

We can use this to calculate where our first grating lobe (m 
= ±1) would appear. Making this change, and using Equation 
1 from Part 1 for ∆Φ, gives:

Which simplifies to:

Then solving for dmax:

This dmax is the condition for no grating lobes in the re-
duced scan angle (θmax), where θmax is less than π/2 (90°). 
For example, if the signal frequency is 10 GHz and we need to 
steer ±50° without grating lobes, then, as Figure 4 shows, the 
maximum element spacing is:

Thus, restricting the maximum scan angle brings a freedom 
to extend the element spacing to increase the physical size per 
channel as well as extend the aperture for a given number of 
elements. An example application that could exploit this phe-
nomenon is for an antenna assigned to a narrow, predefined 
direction. The element gain can be increased for directivity 
in the predefined direction; the element spacing also can be 
increased for a larger aperture. Both result in larger overall 
antenna gain within the narrowed beam angle.

Note that Equation 3 indicates a maximum spacing of one 
wavelength, even for zero steering angle. This is the case if 
grating lobes can’t be tolerated in the visible hemisphere. In 

4. Grating lobes begin to appear at the horizon for θ = 50°, 
N = 32, d = 17 mm, and Φ = 10 GHz.
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the case of a GEO satellite, for example, the entire Earth is 
covered with a steering angle of 9° from mechanical boresight. 
It may be the case that grating lobes can be tolerated, if they 
don’t land on the Earth’s surface. In such a case, the element 
spacing may be several wavelengths, resulting in even more 
narrow beamwidths.

Also worth noting are antenna architectures that attempt 
to overcome the grating-lobe problem by producing a non-
uniform element spacing. These are categorized as aperiodic 
arrays, with spiral arrays as an example. For mechanical an-
tenna construction reasons, it may be desirable to have a com-
mon building block that can be scaled to a larger array, but this 
would produce a uniform array that’s subject to the grating-
lobe conditions described.
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