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P
reviously in this series, we introduced the 
phased-array concept, beamsteering, and array 
gain. Then we presented the concepts of grating 
lobes and beam squint. In this final part, we will 

discuss antenna sidelobes and the effect of tapering across an 
array. 

Tapering is simply the manipulation of the amplitude 
contribution of an individual element to the overall antenna 
response. Earlier in the series, no tapering was applied and 
the first sidelobes were –13 dBc as seen in the figures. Taper-
ing provides a method to reduce antenna sidelobes at some 
expense to the antenna gain and main-lobe beamwidth. Fol-
lowing an introduction to tapering, we will elaborate on a few 
points relative to antenna gain.

Fourier Transform: Rect ←→ Sinc
The transformation of a rectangular function in one do-

main to a sinc function in another domain comes up in differ-
ent forms in electrical engineering. The most common form is 
when a rectangular pulse, in time, emits the spectral content 
of a sinc function. It’s also used in reverse, where wideband 
applications transform a wideband waveform to a narrow 
pulse in time. Phased-array antennas have a similar property: 
a rectangular weighting along the planar axis of the array radi-
ates a pattern following a sinc function.

For applications subjected to this property, the sidelobes of 
the sinc function are problematic with the first sidelobe being 
only –13 dBc. Figure 1 illustrates this principle.

Tapering (or Weighting)
A solution to the sidelobe problem is to apply a weighting 

across the rectangular pulse. This is common in fast Fourier 
transforms (FFTs), and tapering options in phased arrays are 
directly analogous to weighting applied in FFTs. The unfortu-
nate drawback of weighting is that sidelobes are reduced at the 
expense of widening the main lobe. Some example weighting 

functions are shown in Figure 2.

Waveform vs. Antenna Analogy
The domain transformation from time to frequency is rou-

tine enough that it becomes natural for most electrical engi-
neers to visualize. However, for engineers new to phased ar-
rays, how to use the analogy for antenna patterns may not be 
initially apparent. To do so, we replace the time-domain signal 
with the field-domain excitation, and the frequency-domain 
output is replaced with the spatial domain.

Time domain → field domain
• v(t)—voltage as a function of time
• E(x)—field strength as a function of position in the aperture 
Frequency domain → spatial domain
• Y(f)—power spectral density as a function of frequency
• G(q)—antenna gain as a function of angle

Figure 3 illustrates the principle. Here, we compare the ra-
diated energy for two different weightings applied across the 
array. Figure 3a and Figure 3c illustrate the field domain. Each 
dot represents the amplitude of one element in this N = 16 
array. Beyond the antenna, there’s no radiated energy, and ra-
diation begins at the antenna edge. In Figure 3a, an abrupt 
change occurs in the field, while in Figure 3c, there’s a gradual 
increase with distance from the antenna edge. The resulting 
impact on the radiated energy is shown in Figure 3b and Fig-
ure 3d, respectively.

In the next sections, we will introduce two additional error 
terms that impact the antenna-pattern performance. The first 
is mutual coupling. For this article, we merely acknowledge 
the problem and the amount of electromagnetic modeling 
used to quantify the impact. The second is quantization sid-
elobes due to a finite number of bits in the phase-shift control. 
A more in-depth treatment is given to quantization errors, 
and quantization sidelobes are quantified.

Mutual Coupling Errors

Phased-Array Antenna 
Patterns (Part 6)—
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This sixth installment closes out the series on phased-array antenna patterns with a 
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All of the equations and array-factor plots discussed here 
assume that the elements are identical, and each has the same 
radiation pattern. In practice, this isn’t the case. One of the 
reasons concerns mutual coupling, which is the coupling be-
tween adjacent elements. An element’s radiating performance 
may change significantly when it’s widely separated in the ar-
ray vs. when it’s spaced more closely. The elements at the edge 
of the array have a different surrounding environment than 
the elements in the middle of the array.

Furthermore, as the beam is steered, it changes the mutual 
coupling between elements. All of these effects create an addi-
tional error term to be accounted for by the antenna designer 
and, in practice, much effort is spent with electromagnetic 
simulators to characterize the radiation effects under these 
conditions.

Beam-Angle Resolution and Quantization Sidelobes
Another practical phased-array antenna impairment stems 

from the finite resolution of the time-delay unit, or phase 
shifter, used to steer the beam. This is typically digitally con-
trolled with discrete time (or phase) steps. But how does 
one determine the resolution, or number of bits, required to 
achieve the beam-quality goals?

Contrary to common misconceptions, beam-angle resolu-
tion isn’t equivalent to the resolution of the phase shifters. In 
Equation 1, we find this relationship:

We can express this in terms of the phase shift across the 
entire array by substituting the array width D for the element 
spacing d. If we then substitute the phase shifter ΦLSB for ∆Φ, 
we can approximate the beam-angle resolution. For a linear 
array with N elements spaced at a half wavelength, the resolu-
tion of the beam angle is shown in Equation 2:

This is the beam-angle resolution off boresight and de-
scribes the beam angle when one half of the array has a phase 
shift of zero, and the other half has a phase shift of the LSB of 
the phase shifter. Smaller angles are possible if less than one 
half of the array is programmed to the phase LSB. 

Figure 4 plots the beam angle for a 30-element array using a 
2-bit phase shifter, as the phase LSB is progressively switched 
into elements from left to right across the array. Note that the 
beam angle increases until half of the elements are shifted by 
an LSB, and then returns to zero when all elements are at the 
LSB. This makes sense as the beam angle changes through a 
difference in phase across the array. Note that the peak of this 
characteristic is θRES, as previously calculated.

Figure 5 plots θRES as a function of array diameter (at λ/2 
1. A rectangular pulse in time yields a sinc function in the 
frequency domain with the first sidelobe at only –13 dBc.
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2. Shown are some examples of weighting functions; the unfortunate drawback of weighting is that sidelobes are reduced 
at the expense of widening the main lobe. 
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element spacing) for different phase-shifter resolutions. This 
shows that even a very coarse 2-bit phase shifter with a 90° 
LSB can achieve 1° resolution for an array diameter of 30 ele-
ments. 

Solving Equation 7 in Part 2 for 30 elements at λ/2 spacing, 
the main lobe beamwidth is approximately 3.3°, suggesting that 
we have ample resolution even with this very coarse phase shift-
er. So, what do we get for a phase shifter offering higher resolu-
tion? Drawing from analogies between time-sampled systems 
(data converters) and space-sampled systems (phased-array 
antennas), a higher-resolution data converter produces a lower 
quantization noise floor. Higher-resolution phase/time shifters 
result in lower quantization sidelobe levels (QSLLs).

Figure 6 shows the phase-shifter settings and phase error 
across the 2-bit, 30-element linear array previously described, 
programmed to the beam resolution angle θRES. Half of the 
array is set to zero phase shift, and the other half is set to the 
90° LSB. Note that the error, the difference between the ideal 
and actual quantized phase shift, has a sawtooth shape.

The antenna patterns for the same antenna steered to 0° and 
to the beam resolution angle are shown in Figure 7. There’s a 
severe degradation of the pattern due to the quantization error 

4. Shown is a plot of the beam angle for a 30-element array 
using a 2-bit phase shifter, as the phase LSB is progressively 
switched into elements from left to right across the array.

3. These graphs show element tapering transformed to radiated energy weighting: (a) uniform weighting applied to all ele-
ments; (b) sinc function radiated spatially; (c) Hamming weighting applied across the elements; and (d) radiated sidelobes 
reduced to 40 dBc at the expense of broadening the main beam.
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of the phase shifter.
The worst-case quantization sidelobes crop up when the 

maximum quantization error occurs across the aperture, 
when every other element is at zero error and the neighbor is 
at LSB/2. This represents both the maximum possible quanti-
zation error and the maximum periodicity of the error across 
the aperture. This condition is shown for the 2-bit, 30-ele-
ment case in Figure 8. Such situations occur at predictable 
beam angles as presented in Equation 3:

where n < 2BITS, and n is odd. For a 2-bit system, this con-
dition is satisfied four times between horizons, at ±14.5° and 
±48.6°. Figure 9 illustrates the antenna pattern for this system 
for n = 1, q = +14.5°. Note the substantial –7.5 dB quantization 
sidelobe at –50°.

9. Here are worst-case antenna quantization sidelobes 
for: 2 bits, n = 1, 30 elements, and q = +14.5°. Note the 
substantial –7.5 dB quantization sidelobe at –50°.

5. Here, we plot beam-angle resolution vs. array size for 
phase-shifter resolutions of 2 bits to 8 bits.

6. This plot shows the phase-shifter settings and phase er-
ror across the 2-bit, 30-element linear array previously de-
scribed, programmed to the beam resolution angle θRES.

7. Here are the antenna patterns with quantization sid-
elobes at minimum beam angle.

8. The worst-case quantization sidelobes occur when the 
maximum quantization error occurs across the aperture, 
when every other element is at zero error and the neighbor 
is at LSB/2. This condition is shown here for a 2-bit, 30-ele-
ment case.
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At beam angles other than the special cases where the quan-
tization error is sequentially 0 and LSB/2, the RMS error is 
reduced as it is spread across the aperture. In fact, for the angle 
equation (Equation 3) for even values of n, the quantization 
error is zero. 

If we plot the relative level of the highest quantization sid-
elobe for various phase-shifter resolutions, some interesting 
patterns emerge. Figure 10 shows the worst-case QSLL for a 
100-element linear array, employing a Hamming taper so that 
the quantization sidelobes can be differentiated from the clas-
sical windowing sidelobes discussed earlier in this section.

Note that at 30°, all quantization error goes to zero, which 
can be shown to be a consequence of sin(30°) = 0.5. Notice 
that the beam angle of the worst-case level for any n-bit 
phase shifter exhibits zero quantization error at any higher 
resolution n. The beam angles for worst-case sidelobe levels 
described here can be seen, as can the 6-dB improvement in 
QSLL per bit of resolution.

The maximum quantization sidelobe levels, QSLL, for 
2-bit to 8-bit phase-shifter resolutions are shown in Figure 
11, which follows the familiar quantization-noise law for data 
converters:

or about 6 dB per bit of resolution. At 2 bits, the QSLL levels 
are about –7.5 dB, higher than the classical +12 dB for a data 
converter sampling a random signal. This discrepancy can be 
viewed as a consequence of the periodically occurring saw-
tooth error being sampled across the aperture, where the spa-
tial harmonics add in phase. Note that the QSLL isn’t a func-
tion of the aperture size.

Closing Comments
We can now summarize some of the challenges faced by an-

tenna engineers relative to beamwidth and sidelobes:
• Angular resolution requires a narrow beam. A narrow 

beam needs a large aperture, which requires many elements. 

Furthermore, the beam widens when steered off boresight, so 
extra elements are needed to maintain the beamwidth as scan 
angles increase.

• It may seem possible to increase the element spacing to ex-
pand the overall antenna area without adding extra elements. 
This would narrow the beam, but, unfortunately, introduces 
grating lobes if the elements are uniformly spaced. Reduction 
of scan angle, along with aperiodic arrays implementing an 
intentionally randomized element pattern, can be explored to 
exploit increased antenna area while minimizing the grating-
lobe issue.

• Sidelobes are another problem, which we learned can be 
mitigated by tapering the gain of the array toward the edg-
es. However, tapering comes at the expense of widening the 
beam, again requiring more elements. Phase-shifter resolu-
tion can introduce quantization sidelobes that also must be 
factored into the antenna design. For antennas implemented 
with phase shifters, the beam-squint phenomenon causes an 
angular shift vs. frequency limiting the bandwidth available 
for a high angular resolution.

This concludes this six-part series on phased-array anten-
na patterns. We introduced beam pointing, array factor, and 
antenna gain, then explored imperfections of grating lobes 
and beam squint. Finally, we discussed tapering and quanti-
zation errors. The intention is aimed not for antenna design 
engineers fluent in electromagnetic and radiating element 
design, but rather the large number of engineers in adjacent 
disciplines working on phased arrays who may benefit from 
an intuitive explanation of the varied impacts affecting overall 
antenna pattern performance.
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10. This graph plots worst-case quantization sidelobes vs. 
beam angle for phase-shifter resolutions of 2 bits to 6 bits.

11. Shown are worst-case quantization sidelobe levels vs. 
phase-shifter resolutions of 2 bits to 8 bits.
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