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F
or a simple one-port vector-network-analyzer (VNA) 
calibration, only three error terms are needed: directiv-
ity (D), source match (S), and reflection tracking (R). 
These three errors theoretically appear between the 

VNA and the device under test (DUT). Knowledge of these 
three error terms allows for correction or calibration of the 
measurement. 

Directivity error is mostly due to leakage in the bridge. 
Some amount of incident signal causes a small erroneous re-
sponse on the reflection port. A typical raw bridge directiv-
ity might be anywhere from 15 to 40 dB. The source match 
represents the error in the source impedance of the VNA. The 
output source match is never perfect and is made somewhat 
worse by the cable connector and the test cable. A typical raw 
source match for a VNA might be 20 dB. 

The reflection tracking error is basically the frequency re-
sponse of the reflected signal from the DUT into the VNA and 
out through the reflection port of the bridge. This includes the 
loss incurred in the test cable and looks like a small value at 
low frequencies, increasing to several decibels at higher fre-
quencies. 

Figure 1 depicts a network-signal flow diagram with the three error terms included. A few simple manipulations of 
this diagram yield the formula for the measured value as a 
function of the DUT reflection coefficient and these three er-
ror terms.

Note that b2/a2 is our measured reflection coefficient and 
b1/a1 is the actual reflection coefficient of L. We want to 
know b1/a1 while measuring b2/a2. This can be simplified 
with network flow-graph manipulations. For those unfamiliar 
with the technique, it involves only a few simple rules and an 
understanding that the math works only in the direction of a 
flow-graph arrow. For instance, from Figure 1, one can say that 
b2 = R * b1. It is NOT true that b1 = b2/R.

Network Flow-Graph Rules
The first rule is the “Series Rule.” Because b1 = j * a1 and 
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1. Shown is a network-signal flow diagram with the three error terms 

included.

2. This diagram illustrates the series rule: Because b1 = j * a1 and a2 

= b1 * k, then a2 = j * k * a1, and one can break out the connection 

from a1 to a2.
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a2 = b1 * k, then a2 = j * k * a1 and one can break out the 
connection from a1 to a2 (Fig. 2). This is useful if a1 is the 
independent node in the network, as it now gives the other 
two nodes explicitly.

The next rule is the “Parallel Rule”: Because both branches 
“j” and “k” point in the same direction, their contributions 
may be combined as shown in Figure 3.

The next rule is the “Self-Loop Rule”: The loop is created by 
virtue of the Series Rule as the path from a1 to b1 and back 
may be combined (Fig. 4). This may not seem like a useful 
transform, but one more manipulation is possible. A network 
flow will always enter the loop. The loop may be removed, and 
its effect applied to that entering path as follows (Fig. 5).

This transform comes from the parallel rule: 

which reduces to:

If the arrow from b1 pointed to the left and entered the loop, 
then “j” would have to be replaced by:

These rules may now be employed to simplify Figure 1 such 
that all nodes are explicitly defined by the single independent 
node “a2.” The steps encompass the transformation depicted 
in Figure 6, followed by the application of series and parallel 
rules as shown in Figure 7.

Finally, we see that our measured reflection coefficient is 
represented by: 

We can solve this for L and obtain:

5. Application of the self-loop rule leaves one more possible manipu-

lation: There will always be a network flow that enters the loop. The 

loop may be removed, and its effect applied to that entering path is 

shown.

3. Here, we see illustrated the parallel rule: Because both branches 

“j” and “k” point in the same direction, their contributions may be 

combined as shown.

4. According to the self-loop rule, the loop is created by virtue of the 

series rule as the path from a1 to b1 and back may be combined.

6. These rules may now be employed to simplify Figure 1 such that 

all nodes are explicitly defined by the single independent node “a2.” 

First, as shown, the self-loop rule is applied to eliminate a branch.
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which is the result we were looking for.
Now, if we know D, R, and S, we can easily correct our Γm to 

obtain L, which is the actual reflection coefficient.

One-Port Calibration
We now make three measurements of three known artifacts 

and solve a system of equations to obtain the D, R, and S error 
terms. In addition, we could make more than three measure-
ments and perhaps improve our estimation of the error terms 
with a least-squares approach. Rather than write out those 
three equations, we’ll jump right to the matrix notation, which 
is much cleaner.

Form two matrices, C and V:

and

where the Γa values are the actual values and the Γm values 
are the measured values. We must know these actual values 
a priori. These could be an open, short. and load, where the 
actual values are characterized by short delays and parasitic 
capacitance or inductance as is done in a calibration kit. The 
three actual values could also be three shorts with different 
delays such that the three reflection coefficients are spread 
around the outside of the Smith chart over frequency. 

Any three artifacts with known reflection coefficients may 
be used if they’re sufficiently separated on the Smith chart at 
every frequency. If they’re not, the matrix calculations will be 
ill-conditioned and the results unreliable.

With these two matrices, calculate matrix E:

where H is the Hermetian transpose operator, or the matrix 
transposed with its entries conjugated.

From E, we can find D, R, and S: D = E2, S = E3, and R = E1 
+ E2 * E3

It so happens that (CH * C)−1 * CH is a least-squares calcula-
tion. If our measurements are a little noisy, we can improve 
our results by making more known measurements. Simply 
add more rows to the C and V matrices. Matrix E will still have 
three values in the end and the results might be somewhat bet-
ter in the face of slightly noisy measurements.

Conclusion
In this article, we introduced the three-term error-correc-

tion terms, and used a simple method of derivation to show 
how these error terms affect the measured value. Finally, we 
outlined a simple matrix method for easy calculation of one-
port error correction to arrive at calibrated results from the 
error terms. None of this work is original, but it’s educational 
to pull all of the pieces together and demonstrate how they are 
used.
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7. Finally, the series rule is applied, followed by the parallel rule, to 

arrive at the simplification of Figure 1.
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