VSG Empowers Midrange 5G, Wi-Fi 6E, Other Advanced RF Test **p8** Evolution of RF Signal-Observation Tools **p10** Smart Weapons Out-Thinking Humans? p22

Microwaves&RF®

YOUR TRUSTED ENGINEERING RESOURCE FOR OVER 50 YEARS

MARCH 2021 mwrf.com

in mmWave 5G

Validation Test p13

Final Balans

Largest Selection of In-Stock, Ready-to-Ship RF Components

PASTERNACK*

BREAK THE mmWAVE BARRIER.

The VectorStar[™] ME7838x series offers single-sweep frequency span from 70 kHz to 220 GHz.

Anritsu delivers industry-leading broadband systems with the world's best dynamic range, accuracy, precision, and stability.

Building on more than 40 years of design experience, Anritsu has broken the millimeter-wave barrier with the VectorStar ME7838x series. RF and microwave engineers now have access to a powerful measurement tool for performance analysis of devices ranging from transistors in an on-wafer environment to communication systems in commercial or defense applications.

Be a Leader – Discover how you can get better measurement confidence with Anritsu. View our complete line of millimeter-wave testing solutions at **www.anritsu.com/test-measurement**

KEY FEATURES

Broadest frequency coverage to 220 GHz, with extensions to 1.1 THz

Eliminate the time-consuming, error-prone concatenation process across the RF, microwave, and mmWave bands

Modular architecture allows system to grow with your needs

Reduce the risk of waveguide band extrapolation error in your device modeling

Microwaves&RF.

IN THIS ISSUE

FEATURES

10 The Evolution of RF Signal-Observation Tools Tools used to visualize RF signals have evolved over time from the spectrum analyzer to today's RF recorders. However, each era's tools have had limitations. This article shows how the modern approach builds on the best aspects of what's come before.

Overcome Validation-Test Challenges to Reap 13 5G mmWave's Benefits

5G mmWave physical-layer changes have sparked significant RF hardware design and antenna changes. Let's explore some of the test challenges and considerations associated with operation at mmWave frequencies.

22 **Smart Weapons Form Thinking Battlefields** One of the fastest-growing segments of military electronics is the use of artificial intelligence and machine learning in guided weapons,

which lets them do some of the thinking for themselves.

NEWS & COLUMNS

- 2 **EDITORIAL** Global 5G Survey
 - Paints a Rosy Picture
- 6 **NEWS**

- 30 **NEW PRODUCTS**
- 32 **ADVERTISERS INDEX**

JOIN US ONLINE

follow us @MicrowavesRF

become a fan at facebook.com/microwavesRF

HIGH POWER LIMITERS LOW FREQUENCY BROAD BAND 100 WATT CW 10MHz - 3000 MHz

- Frequency range down to very low frequency (10 MHz).
- Available single unit covering 10 Mhz to 3 GHz (LS00130P100A).
- . Low insertion loss and VSWR.
- . 100 Watt CW and 1000 Watt Peak (1 Microsec pulse width) power handling capability.
- . Built-in DC Block @ input and output.
- . Hermetically Sealed Module.

Typical Performance @ + 25 Deg. C

Model	Freq Range ³ (MHz)	Max ¹ Insertion Loss (dB)	Max ¹ VSWR	Max ² Input CW (Watts)
LS00105P100A	10 - 500	0.4	1.3:1	100
LS00110P100A	10 - 1000	0.6	1.5:1	100
LS00120P100A	10 - 2000	0.8	1.7:1	100
LS00130P100A	10 - 3000	1.0	2:1	100

Note 1. Insertion Loss and VSWR tested at -10 dBm. Note 2. Power rating derated to 20% @ +125 Deg. C.

Note 3. Leakage slightly higher at frequencies below 100 MHz.

Other Products: Detectors, Amplifiers, Switches, Comb Generators, Impulse Generators, Multipliers, Integrated Subassemblies

Please call for Detailed Brochures

Émail: Info@herotek.com Website: www.herotek.com Visa/Mastercard Accepted

Editorial DAVID MALINIAK | Editor dmaliniak@endeavorb2b.com

GLOBAL 5G SURVEY Paints a Rosy Picture

A survey of telecom-carrier decision makers revealed that 99% of those polled predict 5G end users will benefit within five years; nearly half of carriers surveyed predict value for users within one year.

ndustry watchers, myself included, tend to be a bit conservative regarding the arrival of 5G's full impact on the telecom industry and our day-to-day lives. But a new global survey of decision makers from telecom carriers commissioned by Molex begs to differ.

When it comes to the arrival of 5G as a significant transformation force, the feeling is, by and large, optimistic. More than half of those surveyed expect to deliver substantial end-user benefits within two to five years, while 47% reported that users already are seeing value or will within one year.

Conducted by Dimensional Research in February, the survey polled over 200 qualified participants in engineering, product, and R&D roles at network operators or mobile virtual network operators (MVNOs).

Among other key findings, 92% expect to achieve 5G business goals within five years. 5G consumer devices will be the first generators of significant new revenue (43%), followed by industrial and IIoT (35%) and fixed wireless access (33%). Unsurprisingly, all respondents report issues with 5G deployment, with the top three challenges named as spectrum issues (41%), lack of consumer use cases (31%), and regulations (30%).

What are the key technology or industry changes that would propel network operators toward their business goals? Answers included reduced costs of 5G infrastructure and network equipment (41%); innovation in enabling technologies, including semiconductors and sensors (31%); availability of new types of connected devices (26%); and stable and consistent government regulations (22%). Only 60% of survey participants expect a "killer app" or transformative use case to drive 5G adoption. Augmented reality, gaming, and smart-home applications topped the list of primary consumer devices while robotics, logistics, and factories were the leading 5G-enabled use cases for industrial and IIoT.

Among primary use cases for fixed wireless access, rural home access topped the list at 53%, followed by city and suburban home access (45%) and remote industrial infrastructure access (41%). In addition, autonomous driving, vehicleto-everything (V2X) communications, and vehicle telematics will lead the way in automotive use cases. Remote patient monitoring, medical wearables, and remote surgery were identified as drivers for the medical market.

While only 25% of respondents believe that 5G is getting it done for consumers today, nearly all expect substantial benefits within five years. More than half say customers in Japan and Korea are seeing those benefits today, while China is viewed as a 5G giant in waiting. Meanwhile, 75% say it will take two to five years for U.S. consumers to reap 5G's rewards nationwide.

Small cell (48%), mmWave (46%), and private networks (46%) were identified as the top three technologies/topologies to play critical roles in enabling 5G advantages. While no consensus was reached on which technology would be first to impact users, mmWave emerged as the long-term leader, garnering 47% of the votes, followed by sub-6 (27%) and wide-area low power (26%).

Amplifiers - Solid State Attenuators - Variable/ Programmable

Bi-Phase Modulators

Couplers (Quadrature, 180, Directional)

Detectors - RF / Microwave

Filters & Switched Filter **Banks**

Form, Fit, Functional **Products & Services**

Frequency Converters

Frequency Sources

Frequency Discriminators & IFM

Frequency Synthesizers

Gain & Loss Equalizers **Integrated MIC/MMIC** Assemblies (IMAs)

IQ Vector Modulators

Limiters - RF / Microwave

Log Amps

Miscellaneous Products

Monopulse Comparators

Multifunction Integrated Assemblies (IMAs)

Phase Shifters & Bi-Phase Modulators

Power Dividers/Combiners (Passive & Active)

Pulse Modulators - SPST

Rack & Chassis Mount Products

Receiver Front Ends & Transceivers

Single Side Band Modulators

SMT & QFN Products

Switch Matrices

Switch Filter Banks Switches - Solid-State

Systems - Radar Sense

& Avoid Systems - Fly Eye Radar

Threshold Detectors

USB Products

Planar Monolithics Industries, Inc. Coaxial Monopulse Comparators

PMI designs and manufactures a variety of Coaxial Monopulse Comparators for beamforming antenna applications up to 21.2 GHz. Form, fit and functional designs can also be replicated to your specific requirements. Standard models with various options are available at PMI's website:

http://pmi-rf.com/Products/monopulse comparators/features.htm

Ö	A CONTRACT OF A	e et el este e		
MPC-20R2G21R2G-CD-LNF	PMC-24-7D5-SFF	PMC-2D22D4-6D8-SFF	PMC-3G3D5G-6D8-SFF	PMC-33D7-6D8-SFF

Frequency Gain Noise Phase Size (Inches) PMI Model No. Range (dB) Temperature Balance Connectors (GHz) MPC-20R2G21R2G-CD-LNF 6.25" x Ø4.8" x 2.0" 20.2 - 21.2 100 K https://www.pmi-rf.com/product-0 to +10 ±3° SMA (F) details/mpc-20r2g21r2g-cd-Inf Frequency Insertion Amp**l**itude Isolation Phase Size (Inches) Balance PMI Model No. Range Loss (dB) (dB) Balance Connectors (GHz) (dB) PMC-24-7D5-SEE 3.23" x 3.23" x 0.43" https://www.pmi-rf.com/product-2 - 4 75 18 +10° +1.0 SMA (E) details/pmc-24-7d5-sff PMC-2D22D4-6D8-SFF 3.56" x 3.56" x 0.43" https://www.pmi-rf.com/product-2.2 - 2.4 6.8 25 ±4° ±0.4 SMA (F) details/pmc-2d22d4-6d8-sff PMC-3G3D5G-6D8-SEE 3.23" x 3.23" x 0.43" https://www.pmi-rf.com/product-3 - 3.5 6.8 23 ±5° ±0.4 SMA (F) details/pmc-3g3d5g-6d8-sff PMC-33D7-6D8-SFF 3.23" x 3.23" x 0.43" 3 - 3.7 6.8 24 ±0.5 https://www.pmi-rf.com/product-±7° SMA (F) details/pmc-33d7-6d8-sff PMC-56-SFF 3.48" x 3.48" x 0.43" https://www.pmi-rf.com/product-7.0 20 +5° +0.5 5 - 6 SMA (F) details/pmc-56-sff PMC-9G10G-7D9-SEE 3.48" x 3.48" x 0.43" https://www.pmi-rf.com/product-details/pmc-9g10g-7d9-sff 9 - 10 7.9 18 +6° ±0.6 SMA (F) PD-CD-001-1 2.35" x 1.7" x 0.5" https://www.pmi-rf.com/product-details/pd-cd-001-1 93-99 8.0 30 +7° +0.5 SMA (F) PMC-9D5G10D1G-7D6-SFF 3.48" x 3.48" x 0.43" https://www.pmi-rf.com/product-details/pmc-9d5g10d1g-7d6-sff +59 95 - 101 76 20 +0.5 SMA (F) PMC-9D5G10D5G-7D6-SFF 3.48" x 3.48" x 0.43" 9.5 - 10.5 https://www.pmi-rf.com/product-7.6 20 ±5° ±0.5 SMA (F) details/pmc-9d5g10d5g-7d6-sff PMC-12G13G-1D6-SFF 3.48" x 3.48" x 0.43" https://www.pmi-rf.com/product-12 - 13 7.6 18 $\pm 5^{\circ}$ ±0.5 SMA(F) details/pmc-12g13g-1d6-sff

West Coast Operation: 4921 Robert J. Mathews Pkwy, Suite 1 El Dorado Hills, CA 95762 USA Tel: 916-542-1401, Fax: 916-265-2597

East Coast Operation: 7311-F Grove Road Frederick, MD 21704 USA Tel: 301-662-5019, Fax: 301-662-1731

PMC-9D5G10D5G-7D6-SFF

PMC-12G13G-1D6-SFF

sales@pmi-rf.com www.pmi-rf.com ISO9001-2015 REGISTERED

Power Modules

DC to 20 GHz

Psat to **31 dBm**

Highly Efficient

Power Made Easy

eclipsemdi.com/modules

Microwaves&RF,

EDITORIAL

SENIOR CONTENT DIRECTOR: **BILL WONG** bwong@endeavorb2b.com EDITOR: **DAVID MALINIAK** dmaliniak@endeavorb2b.com MANAGING EDITOR: **ROGER ENGELKE** rengelke@endeavorb2b.com SENIOR STAFF WRITER: **JAMES MORRA** jmorra@endeavorb2b.com TECHNICAL EDITOR: **JACK BROWNE** jack.browne@citadeleng.com

ART DEPARTMENT

GROUP DESIGN DIRECTOR: ANTHONY VITOLO tvitolo@endeavorb2b.com ART DIRECTOR: JOCELYN HARTZOG jhartzog@endeavorb2b.com

PRODUCTION

GROUP PRODUCTION MANAGER: GREG ARAUJO garaujo@endeavorb2b.com PRODUCTION MANAGER: DEANNA O'BYRNE dobyrne@endeavorb2b.com

AUDIENCE MARKETING

USER MARKETING MANAGER: DEBBIE BRADY dmbrady@endeavorb2b.com FREE SUBSCRIPTION / STATUS OF SUBSCRIPTION / ADDRESS CHANGE/ MISSING BACK ISSUES: OMEDA T | 847.513.6022 TOLL FREE | 866.505.7173 FAX | 847.291.4816 microwaves&rf@omeda.com

SALES & MARKETING REGIONAL SALES REPRESENTATIVES:

AZ, NM, TX: **GREGORY MONTGOMERY** gmontgomery@endeavorb2b.com AK, NORTHERN CA, NV, OR, WA, WESTERN CANADA: **STUART BOWEN** sbowen@endeavorb2b.com AL, AR, SOUTHERN CA, CO, FL, GA, HI, IA, ID, IL, IN, KS, KY, LA, MI, MN, MO, MS, MT, NC, ND, NE, OH, OK, SC, SD, TN, UT, VA, WI, WV, WY, CENTRAL CANADA: **JAMIE ALLEN** jallen@endeavorb2b.com CT, DE, MA, MD, ME, NH, NJ, NY, PA, RI, VT, EASTERN CANADA: **ELIZABETH ELDRIDGE** eeldridge@endeavorb2b.com INTERNATIONAL SALES: GERMANY, AUSTRIA. SWITZERLAND: **CHRISTIAN HOELSCHER** christian.hoelscher@hiahcliffemedia.com

GERMANY, AUSTRIA, SWITZERLAND: CHRISTIAN HOELSCHER christian.hoelscher@highcliffemedia.com BELGIUM, NETHERLANDS, LUXEMBURG, UNITED KINGDOM, SCANDINAVIA, FRANCE, SPAIN, PORTUGAL: LARA PHELPS lara.phelps@highcliffemedia.com ITALY: DIEGO CASIRAGHI diego@casiraghi-adv.com

PAN-ASIA: HELEN LAI helen@twoway-com.com
PAN-ASIA: CHARLES LIU liu@twoway-com.com

REPRINTS: reprints@endeavorb2b.com LIST RENTALS/ SMARTREACH CLIENT SERVICES MANAGER: MARY RALICKI mralicki@endeavorb2b.com

DIGITAL SENIOR DIGITAL INNOVATION & STRATEGY DIRECTOR: RYAN MALEC rmalec@endeavorb2b.com

DESIGN & ENGINEERING GROUP EVP, DESIGN & ENGINEERING GROUP: TRACY SMITH tsmith@endeavorb2b.com GROUP CONTENT DIRECTOR: MICHELLE KOPIER mkopier@endeavorb2b.com VICE PRESIDENT OF MARKETING SOLUTIONS: JACQUIE NIEMIEC jniemiec@endeavorb2b.com

ENDEAVOR BUSINESS MEDIA, LLC

331 54th Ave N., Nashville, TN 37209 USA | www.endeavorbusinessmedia.com CEO: CHRIS FERRELL CRO/CMO: JUNE GRIFFIN CFO: WILLIAM NURTHEN COO: PATRICK RAINS CHIEF ADMINISTRATIVE AND LEGAL OFFICER: TRACY KANE EVP KEY ACCOUNTS: SCOTT BIEDA EVP SPECIAL PROJECTS: KRISTINE RUSSELL

Electronic Design | Machine Design | Microwaves & RF | Hydraulics & Pneumatics | Source ESB | Source Today | Evaluation Engineering

Leader in Customer Value VECTOR NETWORK ANALYZERS

Uncompromising performance regardless of application or budget. **Advanced software features** on Windows or Linux OS without added cost or licensing fees.

VALUE = Cost of licensing lees. Timely support from automation and applications engineers who function as part of your team to help design and perform measurements. Comprehensive VNA solution from Copper Mountain Technologies.

Sign up for a free instrument trial today and experience value firsthand.

VNAs to 44 GHz and Frequency Extension up to 110 GHz from Copper Mountain Technologies

See the R180 VNA above and more with the QR code below

www.coppermountaintech.com

News

DEVELOPMENT ECOSYSTEM Drives G3-PLC Hybrid Connectivity into Smart Devices

Seeking to accelerate G3-PLC Hybrid connectivity in smart-grid and IoT devices, a pair of development kits centers on ST's ST8500 PLC modem chipset.

o accelerate G3-PLC Hybrid connectivity in smart-grid and IoT devices, STMicroelectronics has debuted a development ecosystem for its ST8500 programmable powerline-communication (PLC) modem chipset.

Comprising two evaluation boards targeting the 868-MHz and 915-MHz license-free RF bands, with documented firmware, the ecosystem helps users quickly build and test nodes that comply with G3-PLC Hybrid, the industry's first published standard for dual PLC and RF connectivity.

Equipment such as smart meters, environmental monitors, lighting controllers, and industrial sensors containing the ST8500 chipset, which supports G3-PLC Hybrid, can select the powerline or wireless channel autonomously and change dynamically to ensure the most reliable connection.

Launched in 2019, the chipset combines the ST8500 protocol controller systemon-chip (SoC), which runs ST's G3-PLC Hybrid firmware, with the STLD1 PLC line driver and S2-LP sub-GHz radio. Devices containing the chipset are backward-compatible and interoperable with any G3-PLC network.

ST's hybrid protocol stack is based on G3-PLC, IEEE 802.15.4, 6LowPAN, and IPv6 open standards. By embedding support for RF Mesh at the physical (PHY) and data-link layers, the ST8500 combines the strengths of powerline and wireless

he two new hardware development kits handle PLC and RF connectivity as well as application processing. Each kit comes with the STSW-ST8500GH software framework and documentation.

mesh networking for communication between smart nodes and data collectors. Unlike simple point-to-point links, hybrid mesh-networking interconnects nodes extensively to improve reliability, strengthen fault-tolerant connections, and extend communication distance. The two new hardware development kits handle PLC and RF connectivity as well as application processing. The EVLKST8500GH868 kit is configured for 868-MHz RF operation as recommended in the EU, while the EVLKST-8500GH915 kit operates in the 915-MHz band used throughout the Americas and Asia. Each kit comes with the STSW-ST8500GH software framework and documentation.

Ready to combine with an STM32 Nucleo board for scalable application processing and compatible with ST's large portfolio of X-NUCLEO expansion boards for convenient function extension, the kits provide a platform for developing a wide range of smart-grid and IoT applications.

The EVLKST8500GH868 and EVLK-ST8500GH915 are available now from ST and distributors for \$250. mc

4-channel 64-Gsps TX 4-channel 64-Gsps RX Monolithic 6x6 mm 12nm FinFET CMOS

FULL SPECTRUM CONVERSION™

IQ-Analog's F1000, the first Direct Digital Transceiver (DDTRX) offering over 18 GHz of instantaneous bandwidth, is headed for the Moon.

To learn more about this amazing innovation back here on Earth visit www.iqanalog.com.

Same-Day Turnaround On Custom Assemblies

Design and customize your cable assembly online, and have it shipped today!

Custom Assemblies Shipped Same-Day

USA & Canada +1 (866) 727-8376 International +1 (949) 261-1920 pasternack.com News

VECTOR SIGNAL GENERATOR Empowers Midrange 5G, Wi-Fi 6E, and Other Advanced RF Test

ROHDE & SCHWARZ claims its SMM100A is the only vector signal generator with mmWave testing capabilities in its class. The instrument meets the rigorous expectations for generating digital signals for the most advanced wireless communication devices entering production, as well as for developing future products and technologies. Manufacturers of state-of-the-art 5G devices wishing to test the whole frequency range possible, expect to do so with a single signal generator for both 5G NR FR1 and FR2 frequencies.

The R&S SMM100A vector signal generator displays excellent RF characteristics across the entire frequency range, from 100 kHz to 44 GHz. It covers all bands used by any wireless standards, including LTE and 5G NR, as well as the latest WLAN standards Wi-Fi 6 and Wi-Fi 6E (up to 7.125 GHz). Wireless personal area networks such as Bluetooth are covered, too, The instrument's maximum RF modulation bandwidth of 1 GHz meets requirements to generate the broadband signals used by devices making full use of the most demanding wireless standard specifications, including IEEE 802.15.4z Ultra-Wideband (HRP-UWB).

The R&S SMM100A offers a maximum output power of +18 dBm, which reduces the need for external amplifiers. Excellent modulation frequency response, error vector magnitude (EVM), and adjacent channel power ratio (ACPR) performance result in signal quality for reliable, repeatable test accuracy. The R&S SMM100A comes with six maximum frequency options from 6 to 44 GHz, and four modulation bandwidth options from 120 MHz to 1 GHz to meet all major device band requirements. Users can upgrade their instrument's capabilities according to their need anytime by simply entering a key code.

Both real-time signal generation with an internal baseband generator for one-box signal generation with on-the-spot configuration of signal parameters, and an arbitrary waveform generator (ARB) for waveforms defined with the R&S WinIQSIM2 simulation software, are available. The R&S SMM100A features a large ARB memory depth of up to 2 Gsamples and a high maximum sampling rate of 1.2 Gsamples/s. For production use, the Multi-Segment Mode speeds up test sequences even more, with fast switching between individual baseband signals.

With the built-in SCPI macro recorder, users can create error-free remote-control programs quickly and easily. Moreover, MATLAB or Python scripts can be executed, which can not only be reused on an R&S SMM100A, but on most Rohde & Schwarz vector signal generators currently available.

FOR FURTHER INFORMATION, visit www. rohde-schwarz.com/product/smm100a.

Largest Selection of In-Stock, Ready-to-Ship RF Components

Pasternack has been serving the immediate RF needs of engineers for over 45 years. Our wide selection of connectors, adapters, cable assemblies, electromechanical switches, amplifiers, and attenuators are in-stock and ready for same-day shipment. We are passionate about providing our customers with high-quality products, endless selection, and custom cables required to drive their innovation and backing it with technical service expertise.

Give us a call or order online at pasternack.com by 6 PM CT to have your parts shipped today!

pasternack.com +1 (866) 727-8376 +1 (949) 261-1920

In-Stock and Shipped Same-Day

The Evolution of RF Signal-Observation Tools

Tools used to visualize RF signals have evolved over time from the spectrum analyzer to today's RF recorders. However, each era's tools have had limitations. This article shows how the modern approach builds on the best aspects of what's come before.

F engineers have always been obsessed with pursuing new and better ways to observe and analyze RF signals. In the earliest days of RF engineering, pioneers like Nikola Tesla struggled to simply generate wireless signals, much less analyze them.

We can only imagine the daily struggle involved in attempting RF engineering without any instrumentation. It's quite a leap from the crude laboratory of Tesla to the sophisticated analyzer we take for granted today. But today's instrumentation is actually the result of many decades of incremental improvements. Here's a brief overview of the many steps in the evolution of tools for RF-signal observation.

The Swept-Tuned Spectrum Analyzer

Undoubtedly, the most important breakthrough in RF instrumentation occurred in the late 1950s and 1960s with the emergence of swept-tuned spectrum analyzers. At last, here was a means of viewing signals in the frequency domain. It knocked the oscilloscope off its pedestal as the most important instrument in the RF engineer's toolbox in much the same way as the Ford Model-T replaced the horse and buggy.

The repercussions of this class of instrumentation can hardly be understated as it played a key role in the exponential growth of the biggest test and measure-

ment companies in the world. From this point, the race was on to incrementally improve the spectrum analyzer and overcome its limitations.

Limitations of the Swept-Tuned Spectrum Analyzer

The most fundamental limitation of the swept-tuned spectrum analyzer is its inability to cleanly characterize a timevariant signal. Because the instrument slowly sweeps a range of frequencies, the signal displayed on the screen is a composite of many acquisitions taken across the sweep time. The result: a screen display of a signal that never actually existed in the real world.

While this limitation may have been an acceptable compromise for relatively stable AM and FM signals, it was completely untenable for short, bursted signals like radar. In the ensuing years, various attempts were taken to overcome this limitation using more and more elaborate triggering schemes, correction factors, and zero-span modes. Ultimately, this struggle sowed the seeds for the next big breakthrough in spectrum analysis.

Emergence of the FFT Analyzer

Because signal analysis was a particularly pressing issue for defense applications, industry and government directed substantial resources toward developing a digital fast Fourier transform (FFT) spectrum analyzer. This new type of analyzer promised to capture the entirety of the wideband signal in one acquisition instead of creating a composite of many acquisitions.

Two technologies had to emerge to enable the FFT analyzer to become viable.

The first was high-speed analog-to-digital converters (ADCs). The second was digital processors that could quickly compute an FFT. The efforts were successful and by the late 1980s, very capable FFT analyzers were found on the benches of defense laboratories across the globe. By the mid-1990s, the emergence of digital cell phones accelerated the commercial adoption of FFT analyzers.

Limitations of the FFT Analyzer

The FFT analyzer was revolutionary for many applications, but it still had significant dynamic-range limitations. Even more importantly, it had substantial acquisition dead time as part of its measurement cycle. Ultimately, this resulted in limited fidelity in the time domain.

While the instrument was busy computing the FFT from the prior acquisition, it was blind to all other incoming signals. This became the catalyst for the next incremental improvement in spectrumanalysis instrumentation: the real-time spectrum analyzer (RTSA).

Real-Time Spectrum Analyzer

In the late 1990s, very fast DSP silicon emerged that was perfectly tuned to execute efficient FFT computations. This development made possible the creation of the RTSA.

At its core, the RTSA is an FFT analyzer with rapid FFT bolted onto the back end. The FFT computations occur so quickly that the RTSA provides the user with the illusion of continuous acquisition with no dead time. With this architecture, the probability of missing signals was dramatically reduced. This added capability is particularly important in spectrum monitoring and signal-intelligence (SIGINT) applications.

Limitations of the RTSA

Unfortunately, the real-time spectrum analyzer (RTSA) still presents the RF spectrum to the user as a series of separate acquisitions. The RTSA must break up the signal into multiple, discrete blocks to compute an FFT and present the information to the user.

However, even more importantly, the RTSA doesn't create a permanent record. Without a permanent record, signals are fleeting—they occur, they're displayed, and they disappear without a trace. The RTSA doesn't fundamentally change the operator's workflow in a way that would allow for multiple, transient signals to be frozen in time, replayed, and analyzed later.

Enter the RF Recorder

The RF recorder is the latest iteration in the century-long quest to improve spec-

Frequency Range (MHz)	Coupling (dB)	I.L. Loss (dB) max.	Coupling Flatness max.	Directivity (dB) min.	Input Power (watts) max.	Model Number
2.0-32.0	50 ± 1	0.06	0.25	25	2500	C50-101
0.5-50	50 ± 1	0.10	0.50	20	2000	C50-100
0.5-100	30 ± 1	0.30	0.50	25	200	C30-102
0.5-100	40 ± 1	0.20	0.30	20	200	C40-103
1.0-100	50 ± 1	0.20	1.00	20	500	C50-109
20.0-200	50 ± 1	0.20	0.75	20	500	C50-108
0.1-250	40 ± 1	0.40	0.50	20	250	C40-111
50-500	40 ± 1	0.20	1.00	20	500	C40-21
50-500	50 ± 1	0.20	1.00	20	500	C50-21
100-1000	40 ± 1	0.40	1.00	20	500	C40-20
500-1000	50 ± 1	0.20	0.50	20	500	C50-106
80-1000	40 ± 1	0.30	1.00	20	1000	C40-27
80-1000	50 ± 1	0.30	1.00	20	1000	C50-27
80-1000	40 ± 1	0.30	1.00	20	1500	C40-31
80-1000	50 ± 1	0.30	1.00	20	1500	C50-31

IN-OUT ports: Type N connectors standard, SMA connectors optional. Coupled ports: SMA connectors standard. See website for details.

MICROWAVE CORPORATION

www.pulsarmicrowave.com

48 Industrial West, Clifton, NJ 07012 | Tel: 973-779-6262 · Fax: 973-779-2727 | sales@pulsarmicrowave.com

trum analysis. It builds upon all previous generations of spectrum analyzers with the added capability of storing a permanent record of raw RF signal data.

Unlike the RTSA, most RF recorders don't need to break an incoming RF signal into discrete chunks for further FFT processing. Instead, these instruments natively capture time-series data. A truly continuous, gap-free stream of RF signal data is preserved as a permanent record.

Of course, most human operators will not gain much insight by viewing raw times-series IQ data on a screen. A well-designed RF recorder, such as Spectrum Labs' Spectrum Defender, will record time-series data but still allow the operator to view signals in a conventional spectrum-analyzer-style display. Under the hood, these RF recorders are retrieving time-series data from disk and computing a "just-in-time" FFT to create a user-friendly, frequency-domain display.

ith a timeseries RF recorder, there's no need to worry about the FFT length or resolution bandwidth used when the signal was originally observed or recorded in the field.

Importantly, this instrument architecture enables the user to change the FFT length (and related resolution bandwidth) to any desired value, at any point in the future, without fundamentally altering the underlying record of signal data. With a time-series RF recorder, there's no need to worry about the FFT length or resolution bandwidth used when the signal was originally observed or recorded in the field. This is a neat trick that the RTSA is hard-pressed to duplicate.

The permanent record provided by an RF recorder allows us to capture a true, continuous view of the electromagnetic environment with no acquisition dead time, and no advance knowledge of the optimum FFT length. Engineers can retrieve and interrogate any portion of the RF spectra on demand in the time domain, frequency domain, or joint time-frequency domain. The very latest RF recorders even allow engineers to capture spatial-domain information with multiple phase-coherent channels.

One hundred years ago, that wasn't something Nikola Tesla could have ever imagined.

Real-Time Spectrum Analyzers

Combining Swept Spectrum, Real-Time, Vector Signal and Vector Network Analysis

Image: State of the state of the

RSA3000 & 5000 Series

- 3 to 6.5GHz Models
- 1ms Sweep
- 1Hz RBW
- 7 Visualization Modes
- Available Tracking Generators

RSA Series Real-Time Analysis:

- VNA-Vector Network Analysis
- VSA-Vector Signal Analysis
- Spectrum Monitoring
- RF Device Characterization
- EMI Pre-Compliance

Discover Rigol's Powerful RF Test Solutions Check out Videos, App Notes & More

KHUSHBOO KALYANI | Senior Product Marketing Engineer, LitePoint

Overcome Validation-Test Challenges to Reap 5G mmWave's Benefits

5G mmWave physical-layer changes have sparked significant RF hardware design and antenna changes. Let's explore some of the test challenges and considerations associated with operation at mmWave frequencies.

e're living in an era inundated with smart devices and their need for data and seamless connectivity. This influx will only intensify with the arrival and adoption of 5G.

Unlike previous generations of cellular technologies, which primarily focused on mobile communication, 5G is designed to offer more ubiquitous support for heterogeneous devices used in several industry verticals. 5G comes with a lofty promise of theoretical data rates as high as 10 Gb/s, latency lower than 1 ms, and massive connection density of nearly 1 million/connections/km².

5G is truly optimized to support not just data-hungry use cases like video streaming over smartphones, tablets, and customer-premises equipment (CPEs), but also latency-sensitive use cases such as remote healthcare and automotive connectivity as well as dense communication between indoor and outdoor IoT devices. But how does 5G deliver such enhanced capabilities?

5G brought about several transformations in the air interface to deliver high performance with improved efficiency, one of which is the addition of new spectrum. It's supported in both the sub-6-GHz frequency range 1 (FR1) spanning from 410 MHz to 7.125 GHz, and the mmWave frequency range 2 (FR2) spanning over mmWave frequencies from 24.25 to 52.6 GHz. Adding these higher frequencies not only enables more continuous spectrum, translating into higher bandwidths (100 MHz/400 MHz) and data rates, but allows for a flexible subcarrier spacing (15/30/60/120 kHz), facilitating a scalable deployment.

5G Operation Over mmWave

With support for enhanced mobile broadband (eMBB) applications, 5G can operate over mmWave frequency bands. Though these frequencies offer wider channel bandwidths, dramatically improving throughput, they're exceptionally prone to path loss due to smaller wavelengths, causing reduction in power density and distance of propagation. As a result, the communication in the FR2 range requires devices to operate in a lower signal-to-noise ratio (SNR) environment, making it sensitive to RF impairments.

To compensate for this loss, 5G New Radio (NR) employs beamforming, which uses multiple phased-array antenna modules to maximize and steer radio energy in a specific direction (*Fig. 1*). This is achieved by independently feeding each of the elements in the array with a signal that's adjusted for phase and amplitude. As a result, there's a constructive addition

only in the desired direction and null in other directions. This improves the SNR and increases the chances of signal reception at high frequencies.

For a certain gain, the size of the antenna aperture is inversely proportional to the frequency. This necessitates that many of these elements be integrated in a physical antenna module to maintain a certain output power and capture capability.

Integrated RFFE

Though the beamforming technique may sound simple, it drives significant changes in the radio-frequency front end (RFFE) and antenna design.

A RFFE contains active electronic circuitry that's responsible for converting the information from the baseband to radio signals. The information for each band is processed by several elements in the RF chain (power amplifiers, low-noise amplifiers, filters, tuners, and so on) and fed at the appropriate power level to the right antenna. For devices designed to operate at lower frequencies, the RFFE circuitry and antennas are physically separate as the antenna dimensions are larger and the RF losses are low.

××	××	××	××	××	××	××
××	×	××	×	××	××	××
××	××	××	××	××	××	××
××	××	×	××	××	××	X

1. Shown is a graphical representation of beamforming using mmWave antenna modules.

DC TO MMWAVE

Preferred by 20,000+

More than Just a Supplier

Selection and Solutions

- 27 product lines from one source
- 7500+ models in stock and growing
- Coverage from VHF to mmWave
- Custom components, integrated systems and test solutions with fast turnaround

Service

- Global presence, local service
- Accessible engineering and support
- Same-day shipping and on-time delivery
- Short lead times and low minimums

Peace of Mind

- Award-winning quality excellence
- Easy troubleshooting and RMA process
- Supply chain security through the life of your system—no EOL target

Constant Innovation

- Relentless investment in new products and design capabilities
- 400+ catalog introductions per year
- Patented technologies

Validation Test for 5G mmWave

 It's imperative to characterize and verify the periormance of the integrated RFFE, also referred to as the mmWave antenna module.

Table 1: RF Characteristics Referenced in Terms of Spherical Power Metrics

Characteristics	Test Item	mmWave (OTA)
	UE transmitted power (max & min)	EIRP spherical coverage
Transmitter	Transmit signal quality (EVM/Freq error/Carrier leakage/IBE)	Beam peak
	Output RF spectrum emission (occupied bandwidth/SEM/ACLR)	TRP
	Reference sensitivity	EIS
Receiver	Max input level	EIS
	Adjacent channel sensitivity	EIS

However, at mmWave frequencies, the RF circuitry densifies to feed both the horizontal and the vertical polarizations of several different antenna elements, making it extremely important to integrate the radiating antenna elements with the active radio circuitry, and shrinking the RFFE chain to minimize the signal attenuation. For this reason, it becomes extremely crucial to characterize and verify the performance of the integrated RFFE, also referred to as the mmWave antenna module (*Fig. 2*).

5G mmWave Test Challenges

All of these physical-layer changes have also prompted significant RF hardware design and antenna changes, making it extremely important and, at the same time, challenging, to validate the end-user device performance. Let's explore some of the test challenges and considerations associated with operation at mmWave frequencies.

3D Beamforming Characterization and Verification

The integration of the RFFE and antenna arrays makes RF probing problematic, eliminating the option of conducted testing. At the frequencies used in LTE or 5G FR1, the performance of the transmitter and receiver is measured using the conducted test mode, and antenna performance is verified by a radiated test methodology. But at mmWave frequencies, all tests are performed over the air (OTA) in a shielded environment.

As described earlier, mmWave antenna arrays consist of multiple small elements, fed with a single data stream (polarization) or dual data streams (dual polarization) and thus generating a threedimensional (3D) spherical beam. As a result, we must characterize the beam's radiation pattern in a well-calibrated setup at multiple angles to verify the DUT's performance relative to the direction of propagation. The 3rd-Generation Partnership Project (3GPP) recognizes the spherical measurements-effective isotropic radiated power (EIRP), effective isotropic sensitivity (EIS), beam peak gain, and 3-dB beam width—as some of the key metrics to measure the performance of the transmitter and the receiver chain (Table 1).

RF MEASUREMENT

SOLUTIONS FOR

Test with Confidence™ www.nsi-mi.com

in

D,**⊳**),

F

3. A typical mmWave transceiver circuit consists of several components, including mixers, local oscillator, phase shifters, power amplifiers, low-noise amplifiers, and integrated antennas.

		I	dea	C	ons	tell	atio	n					Cor	mp	olitu	ion ide	dis	tori	ted	by				,	Cor	Pł	llat	ior e in	n di nba	isto	nce	d b	y		
	A				-	12				-	to sails	10 ma					10.4					7	The Galactic	- 641 2 - 641				-							Ti Cont
	Parameter	-					110		 110		11.0.10	and the second second	1											a a ser line											
	August .	-	317									Free					-		-					- Anna	-	1.0								11.9	
	Appropriate	-	110									Appropriate count		1.0										Assessments in cases	1.00	1.14									
	Parts for bother		175									Physical Sile Institution		1.66									1	Wanter 764 Yourke		4.00									
	12.004		44.05									15 (the		41.(1									1.0	12195-0		415									
	Property (Med	-	12								-	Parameter UPost	. 4	111										Tagety Med		144									
	Apasse Case New											Symethics from		.9.8									100	Avenue Construction	100	1.44									
	Design line	- 21	-									Dis file	- 21										1.00	2 yrs 114											
	CONTRACTOR .	12	4100	- 2								Tarbit Tork	- 21	1111									22	DAM ARM LTM.	12	122	-						-		
	Intel Aug Care	1.4	416									THE PARTY	- 21	-									100	And in case of the local	- 2	1.00									
	Greekane Geb	-										40 Materia San	- 21	4.86										a) employed last		4.14									
	Ginterno Pres	-	18									Al Internet Press	144	4.46									100	(C. Industrian Prime	1.00	1.418									
	OC Lonings		39.82									20 hostop	- 60	41.47									-	Stindage		-0134									
	UCUMPR		342									Winter		91.87									1.0	abunna .		. 41.94									
	of Parama	400	-									Rf Frequency	14	ane k									-	Af Prepares	44	-									
	Annual State Time	-	****									Halds for Tex	-	****									-	Addate first first	-	21.60									
	Annua (un firm	-	1.16									Assess funt line		4.88										Autoba have Tree	-	4.96									
	(Mart)	_	_	_	_	_	_	_				10.4		_	_	_			_				-	27al-	_			_	_			_			
		9						1		-		an marine							-		-	iris ta		an (orași)	-								- 11	te (ana	140.0.00
												48-																							
															16.1		100	2.06	-												10.12	100			
			- *		•	•	•	• •				1.44		- 33		с×.	222	200	100																
														- 11	C - N	1.0	207	STP.	881									1.1	•						
	100											10.		-04	6 R	191		λŇ	100																
														- 33	6- Q	-11-	242	10.	80										- 21		1.1				
	1.12				•	• •	•	• •			4400			- 38		201	212	34									•				•				
											100			-34	÷. 1	97.	28	100					100												
														- 22	22.0	60	21	9.5	144																
					-									1	1 ± 1	202	22	1.015	32									-			100				
								• •						. 3	22	272	97	222	16											• •		•			
														- 41	All	2.00	221	2.2	28.												100				
												100		-		-		10 M	72								10	1	-	2.7	100	-			
	-1-											-18-																							
The state of the s																																			

4. Modulation accuracy can be adversely affected by a phase imbalance resulting from a phase shift between the I and Q output signal from the LO or amplitude imbalance caused by a gain shift between the I and Q signals.

To accomplish the tests in *Table 1*, the entire procedure necessitates the use of precise device positioning, alignment with the measurement antenna to avoid power loss and measurement inaccuracy, and a synchronized chamber positioner and DUT control. The overall methodology is time-consuming and can be very prone to setup errors.

Frequency Drift Resulting in RF Impairments

Figure 3 describes a typical mmWave transceiver circuit consisting of several components, including mixers, local oscillator (LO), phase shifters, power amplifiers, low-noise amplifiers, and integrated antennas.

The characteristics of these components can largely affect the performance of the communication system. Any imperfections resulting from either a manufacturing defect or mutating frequency response can notably degrade signal quality, resulting in poor errorvector magnitude (EVM). These effects intensify even further at higher mmWave frequencies, denser modulation schemes, and larger antenna array sizes, making test and measurement highly sensitive to some RF impairments.

For example, phase noise resulting from the local oscillator could degrade the

			N	RB			Number	Test case count with all	Total test case count		
ODFM	SCS (KHz)	50 MHz	100 MHz	200 MHz	400 MHz	Modulations	of CCs	possible RB sweep	including all possible modulation schemes		
DETE	60	1145	3315	9288	1	5	1	13,748	68,740		
DFIS	120	360	1145	3315	9288	5	1	14,108	70,540		
CD.	60	2211	8778	34980		5	1	45,969	229,845		
CP	120	528	2211	8778	34980	5	1	46,497	232,485		
							Total	27,856	601,610		

5. Shown is a total test-case count sweeping across multiple resource block allocations. Note that the test-case count can vary significantly based on a combination of physical parameters under test.

signal-to-noise ratio (SNR), thereby constraining the use of higher-order modulations and limiting the ability to detect and demodulate weaker signals. Other factors affecting modulation accuracy could be a dc offset due to LO leakage, phase imbalance caused by a phase shift between the I and Q output signal from local oscillator or amplitude imbalance resulting from gain shift between I and Q signals (*Fig.* 4), errors in digital-to-analog converters (DACs), or inconsistencies in the analog mixers. All of these defects could cause a shift in EVM, resulting in an attenuated signal and distorted waveform.

Implementing Comprehensive Test Coverage

To support a diverse array of devices across disparate industry verticals, 5G offers a wide range of physical-layer features to enable flexibility in implementation. *Table 2* exhibits support for wider bandwidths, flexible subcarrier spacings, multiple access schemes, and large carrier aggregation. All of it is supported over different mmWave frequency bands as specified in *Table 3*.

However, this flexibility gives rise to an exponential number of possible comprehensive verification test cases that could be executed based on the number of carriers, slot combinations, massive-input massive-output (MIMO) configurations, modulation schemes, orthogonal frequency-division multiplexing (OFDM) types, and bandwidths. *Figure 5* shows almost 600,000 test cases for just a single mmWave frequency to cover all bandwidths, modulation schemes, and OFDM types. Furthermore, the process could still become much more complicated if the device were to support multicarrier operation in the form of carrier aggregation, necessitating a well-built automation framework to support validation across varied intra- and inter-band combinations. Not only does this magnify the effort of test case design, development, execution, and verification, but it also directly translates into increased time to market, significantly curtailing production throughput and overall cost economics.

Simplifying the Complex OTA Test Setup

The goal for any technology is to be the first to market while satisfying the competing motives of maintaining quality and high production yield—mmWave is no different. However, what does differ is the dramatic increase in test-setup complexity when scaled from R&D to production, especially when moving from single-DUT to multi-DUT testing.

An ideal R&D lab setup would look simple with a seemingly direct connection between the test equipment and the

(Continued on page 31)

Table 2: Physical-Layer Capabilities Supported by 5G NR mmWave over LTE

Parameter	4G LTE	5G FR2 (mmWave)
Frequency range	Up to 6 GHz	24.25 – 52.6 GHz
Duplex mode	FDD, TDD	TDD
Subcarrier spacing	15 kHz	60,120 kHz
Bandwidth	1.5, 3, 5, 10, 15, 20 MHz	50, 100, 200, 400 MHz
Access scheme	DL: OFDMA, UL: SC-FDMA	DL: CP-OFDM, UL: DFT-s-ODFM
Carrier	5 carriers	16 carriers
aggregation	(with maximum aggregated BW of up to 100 MHz)	(with maximum aggregated BW of up to 1200 MHz)

Table 3: mmWave Frequency Bands as Defined by 3GPP Rel-16

Band	Frequencies (GHz)
n257	26.5 - 29.5
n258	24.25 - 27.50
n259	39.50 - 43.50
n260	37.0 - 40.0
n261	27.50 - 28.35

Instrumental for your Innovation

Having the right parts at the right time is instrumental for your innovation. That is why Fairview Microwave offers more than 1 Million RF & microwave components in-stock and ready to ship today.

- 99%+ RF components and assemblies in-stock
- · Easy ordering
- Online data sheets
- Expert technical and sales support service
- Orders placed by 6 PM CST ship same-day

The Right RF Parts Right Away

fairviewmicrowave.com +1 (800) 715-4396 +1 (972) 649-6678 ■ Fairview Microwave an INFINIT© brand

DC TO 50 GHZ

Hi-Rel Products

For the Toughest Environments

- 50+ years of design and manufacturing experience
- Supply chain security—no EOL target
- Ceramic, plastic and bare die packaging formats
- Broad selection off-the-shelf + custom designs
- In-house upscreening for MMIC, core and wire, and LTCC components

Capable of meeting MIL requirements for:

Gross leak, fine leak, thermal shock, vibration, acceleration, mechanical shock and HTOL. Additional screening available on request.

Mini-Circuits

defense electronics

A Special Section to ENDEAVOR'S DESIGN ENGINEERING & SOURCING GROUP

GPS Jamming Detection for Time Servers Safeguards Navigation

SecureSync now can access Prevent, Respond, and Recover PNT protection steps through integration of interference and GPS jamming detection technology.

ROLIA USA is introducing GPS jamming detection for the company's SecureSync time servers for DISA-approved resilient timing and synchronization; positioning, navigation, and timing (PNT); and cybersecurity.

Interference detection is a key enabler for resiliency in critical infrastructure, as defined in the DHS Resilient PNT conformance framework and the federal PNT Executive Order.

SecureSync users now can take advantage of Prevent, Respond, and Recover PNT protection steps through integration of interference and GPS jamming detection technology. SecureSync is scalable, flexible, and configurable. In addition to interference detection, resiliency on SecureSync is available through a multi-layered approach that uses anti-jam antennas, Orolia's Interference Detection and Mitigation (IDM) suite with spoofing detection, as well as time error minimization with internal oscillators. Qualified military customers also are eligible for secure military signals such as SAASM and M-Code.

Military and critical infrastructure operations depend on GPS signals, PNT data, time, and frequency to synchronize systems.

Software Design Tools Blend Shipboard Radar and Video

CAMBRIDGE PIXEL'S MARITIME DIS-PLAY FRAMEWORK (MDF) software design tools enable maritime integrators to speed development of automatic radar plotting aid (ARPA) radar display consoles.

The software provides a .NET framework, optionally with source code, that designers can use as the starting point for a custom shipboard application that displays primary radar, radar tracks, S-57/S-63 electronic navigational charts, secondary transponder information like AIS and ADS-B, and NMEA navigation data.

The MDF software can receive video from radar by Furuno, Hensoldt, JRC, Koden, Raymarine, Raytheon, Simrad, Sperry, and Terma, with control of the radar supported for certain models.

The MDF software supports bearing lines, range markers, trails, closest point of approach, and time to closest point of approach. It also supports camera video to integrate radar and camera display for security against piracy and smugglers.

The MDF software is compatible with Cambridge Pixel's radar processing products, such as SPx Server for target tracking and SPx Fusion. The Maritime Display Framework is written in the C# language and is designed for development of a Windows WPFbased client application.

JACK BROWNE | Technical Contributor

SMART WEAPONS FORM THINKING BATTLEFIELDS

1. The StormBreaker autonomously detects and destroys moving targets in foul weather, using AI to comb through data collected by multiple seekers including millimeter-wave radar, IR imaging, and laser-based systems. (Courtesy of Raytheon Technologies, Raytheon Missiles & Defense)

One of the fastest-growing segments of military electronics is the use of artificial intelligence and machine learning in guided weapons, which lets them do some of the thinking for themselves.

ODERN BATTLEFIELDS are immersed in electronic devices and data, whether on the ground, at sea, or in the air. The amounts of data from well-established systems and technologies such as radar, sonar, and LiDAR are becoming too much for any warrior to process, encouraging the development of semi-autonomous or "smart" weapons that can share in the decision-making.

Equipped with artificial-intelligence (AI) and machine-learning (ML) technologies, many of these weapons are guided by light, sound, or electromagnetic (EM) waves to reach a selected target with high accuracy. In addition, smart weapons can be programmed to filter unwanted signals in multiple-signal environments and find a specific target on a battlefield with many potential targets.

RF Amplifiers and Sub-Assemblies for Every Application

Delivery from Stock to 2 Weeks ARO from the catalog or built to your specifications!

ISO 9001:2000

and AS9100B CERTIFIED

- Competitive Pricing & Fast Delivery
- Military Reliability & Qualification
- Various Options: Temperature Compensation, Input Limiter Protection, Detectors/TTL & More
- Unconditionally Stable (100% tested)

OCTAVE BA	ND LOW N	OISE AM	PLIFIERS			
Model No.	Freq (GHz)	Gain (dB) MIN	Noise Figure (dB)	Power-out@P1-d	B 3rd Order ICP	VSWR
CAU1-2110	0.5-1.0	28	1.0 MAX, 0.7 TYP	+10 MIN	+20 dBm	2.0:1
CA12-2110	1.0-2.0	30	1.0 MAX, 0.7 IYP	+10 ///IN	+20 dBm	2.0:1
CA24-2111 CA48-2111	1 0-8 0	27	1.1 MAX, 0.75 TTT 1.3 MAX 1.0 TVP	+10 MIN	$\pm 20 \text{ dBm}$	2.0.1
CA812-3111	8 0-12 0	27	1.6 MAX, 1.0 TH	+10 MIN	+20 dBm	2.0.1
CA1218-4111	12.0-18.0	25	1.9 MAX, 1.7 TYP	+10 MIN	+20 dBm	2.0:1
CA1826-2110	18.0-26.5	32	3.0 MAX, 2.5 TYP	+10 MIN	+20 dBm	2.0:1
NARROW	BAND LOW	NOISE AI	ND MEDIUM PO	WER AMP	LIFIERS	
CA01-2111	0.4 - 0.5	28	0.6 MAX, 0.4 TYP	+10 MIN	+20 dBm	2.0:1
CA01-2113	0.8 - 1.0	28	0.6 MAX, 0.4 TYP	+10 MIN	+20 dBm	2.0:1
CA12-311/	1.2 - 1.6	25	0.6 MAX, 0.4 IYP	+10 MIN	+20 dBm	2.0:1
CA23-3111	2.2 - 2.4	30	0.6 MAX, 0.45 IYP	+10 MIN	+20 dBm	2.0:1
CA23-3110	2.7 - 2.9	29	0.7 MAX, 0.5 ITP	+10 ///IN	+20 dBm	2.0.1
CA56-3110	54-59	40	1.0 MAX 0.5 TYP	+10 MIN	$\pm 20 \text{ dBm}$	2.0.1
CA78-4110	7 25 - 7 75	32	1.2 MAX 1.0 TYP	+10 MIN	+20 dBm	2 0.1
CA910-3110	9.0 - 10.6	25	1.4 MAX, 1.2 TYP	+10 MIN	+20 dBm	2.0:1
CA1315-3110	13.75 - 15.4	25	1.6 MAX, 1.4 TYP	+10 MIN	+20 dBm	2.0:1
CA12-3114	1.35 - 1.85	30	4.0 MAX, 3.0 TYP	+33 MIN	+41 dBm	2.0:1
CA34-6116	3.1 - 3.5	40	4.5 MAX, 3.5 TYP	+35 MIN	+43 dBm	2.0:1
CA56-5114	5.9 - 6.4	30	5.0 MAX, 4.0 TYP	+30 MIN	+40 dBm	2.0:1
CA012-0115	0.0 - 12.0	30	4.5 MAX, 3.5 IYP	+30 /////	+40 dBm	2.0:1
CA012-0110	12.0 - 12.0	28	5.0 MAX, 4.0 TTF	+33 MIN	+41 upm	2.0.1
CA1415-7110	14.0 - 15.0	30	5 0 MAX 4 0 TYP	+30 MIN	+40 dBm	2.0.1
CA1722-4110	17.0 - 22.0	25	3.5 MAX, 2.8 TYP	+21 MIN	+31 dBm	2.0:1
ULTRA-BRO	DADBAND 8	MULTI-C	OCTAVE BAND A	MPLIFIERS		
Model No.	Freq (GHz)	Gain (dB) MIN	Noise Figure (dB)	Power -out @ P1-d	B 3rd Order ICP	VSWR
CA0102-3111	0.1-2.0	28	1.6 Max, 1.2 TYP	+10 MIN	+20 dBm	2.0:1
CAU106-3111	0.1-6.0	28	1.9 Max, 1.5 IYP	+10 MIN	+20 dBm	2.0:1
CAU100-3110	0.1-0.0	20	2.2 Mux, 1.0 ITF 3.0 MAY 1.8 TVP	+10/MIN	+20 (DIII	2.0.1
CA07-3112	0.1-0.0	36	4 5 MAX 2 5 TYP	+30 MIN	+32 dBm	2.0.1
CA26-3110	2.0-6.0	26	2.0 MAX, 1.5 TYP	+10 MIN	+20 dBm	2.0:1
CA26-4114	2.0-6.0	22	5.0 MAX, 3.5 TYP	+30 MIN	+40 dBm	2.0:1
CA618-4112	6.0-18.0	25	5.0 MAX, 3.5 TYP	+23 MIN	+33 dBm	2.0:1
CA618-6114	6.0-18.0	35	5.0 MAX, 3.5 TYP	+30 MIN	+40 dBm	2.0:1
CA218-4116	2.0-18.0	30	3.5 MAX, 2.8 IYP	+10 MIN	+20 dBm	2.0:1
CA218-4110	2.0-18.0	30	5.0 MAX, 3.5 IYP	+20 /MIN	+30 dBm	2.01
	2.0-10.0				$1 \leq 1 $ dBm	/ II'I
Model No	MPIIFIFRS	LI	5.0 MAX, 5.5 ITF	+24 /////	+34 dBm	2.0.1
MODELINO.	Freq (GHz)	put Dynamic F	S.O MAX, S.S TTF	Ranae Psat P	+34 dBm ower Flatness dB	VSWR
CLA24-4001	Freq (GHz) In 2.0 - 4.0	put Dynamic F -28 to +10 d	Cange Output Power Bm +7 to +1	Range Psat P 1 dBm	+34 dBm ower Flatness dB +/- 1.5 MAX	VSWR 2.0:1
CLA24-4001 CLA26-8001	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0	put Dynamic I -28 to +10 d -50 to +20 d	S.O. MAX, S.S. TTP Range Output Power Bm +7 to +1 Bm +14 to +1	Range Psat P 1 dBm 18 dBm	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX	VSWR 2.0:1 2.0:1
CLA24-4001 CLA26-8001 CLA712-5001	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d	S.0 MAX, 3.5 TTF Range Output Power Bm +7 to +1 Bm +14 to + Bm +14 to +	Range Psat P 1 dBm 18 dBm 19 dBm	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX	2.0:1 VSWR 2.0:1 2.0:1 2.0:1
CLA24-4001 CLA26-8001 CLA712-5001 CLA618-1201	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4 6.0 - 18.0	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -50 to +20 d	Stowman, Stowm Stowman, Stowman, Stowta, Stowman, Stowman, Stowman, Stowman, Stowman, St	Range Psat P 1 dBm 18 dBm 19 dBm 19 dBm 19 dBm	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX	2.0:1 VSWR 2.0:1 2.0:1 2.0:1 2.0:1
CLA24-4001 CLA26-8001 CLA26-8001 CLA712-5001 CLA618-1201 AMPLIFIERS *	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4 6.0 - 18.0 WITH INTEGE Integer (GHz)	-28 to +10 d -28 to +10 d -50 to +20 d -21 to +10 d -50 to +20 d ATED GAIN	$\begin{array}{rrrr} \text{S.0 WAA, S.5 HT} \\ \text{Range} & \text{Output Power} \\ \text{Bm} & +7 \text{ to } +1 \\ \text{Bm} & +14 \text{ to } +1 \\ \text{Bm} & +14 \text{ to } +1 \\ \text{Bm} & +14 \text{ to } +1 \\ \text{ATTENUATION} \\ Noise Forms (ID) Provided in the second s$	Range Psat P 1 dBm 18 dBm 19 dBm 19 dBm	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX	2.0:1 VSWR 2.0:1 2.0:1 2.0:1 2.0:1
CLA24-4001 CLA26-8001 CLA712-5001 CLA618-1201 AMPLIFIERS 1 Model No. CA001-2511A	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4 6.0 - 18.0 WITH INTEGI Freq (GHz) 0.025.0 150.0	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -50 to +20 d ATED GAIN Gain (dB) MIN	S.0 MAA, S.3 HT Range Output Power Bm +7 to +1 Bm +14 to + Bm +14 to + Bm +14 to + Immediate +14 to +	Range Psat P 1 dBm 18 dBm 19 dBm 19 dBm 19 dBm ver-out @P1-dB G	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX ain Attenuation Range	2.0:1 VSWR 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1
CLA24-4001 CLA26-8001 CLA712-5001 CLA618-1201 AMPLIFIERS Model No. CA001-2511A CA05-3110A	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4 6.0 - 18.0 WITH INTEGF Freq (GHz) 0.025-0.150 0.5-5 5	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -50 to +20 d XATED GAIN Gain (dB) MIN 21 23	Storman, Storman	Range Psat P 1 dBm 18 dBm 19 dBm 19 dBm 19 dBm wer out@PtdB G +12 MIN +18 MIN	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX ain Attenuation Range 30 dB MIN 20 dB MIN	2.0:1 VSWR 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1
AUGUEL NO. CLA24-4001 CLA26-8001 CLA712-5001 CLA618-1201 AMPLIFIERS Model No. CA001-2511A CA05-3110A CA56-3110A	Implifiers Freq (GHz) Ir 2.0 - 4.0 7.0 - 12.4 6.0 - 18.0 1000000000000000000000000000000000000	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -50 to +20 d ATED GAIN Gain (dB) MIN 21 23 28	Storman, Storman	Pange Psat P 1 dBm 18 dBm 18 dBm 19 dBm 19 dBm 12 dBm 12 dBm 12 dBm 12 dBm 13 dBm 14 Bm 14 MIN +18 MIN +16 MIN	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX ain Attenuation Range 30 dB MIN 20 dB MIN 22 dB MIN	2.0:1 VSWR 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 1.8:1
CLA24-4001 CLA24-8001 CLA712-5001 CLA618-1201 AMPLIFIERS Model No. CA001-2511A CA05-3110A CA56-3110A CA612-4110A	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 7.0 - 12.4 6.0 - 18.0 WITH INTEGF Freq (GHz) 0.025-0.150 0.5-5.5 5.85-6.425 5.85-6.425 6.0-12.0	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -21 to +10 d CATED GAIN Gain (dB) MIN 21 23 28 24	Ange Output Power Bm +7 to +1 Bm +14 to + Score +14 to + Domain +14 to + Score +14 to + Score +14 to + Score +14 to + Core -14 to + Score -15 to + -2.5 MAX, 1.5 TYP -15 to +	Pange Psat P 1 dBm 18 dBm 18 dBm 19 dBm 19 dBm 19 dBm 19 dBm 19 dBm +12 MIN +12 MIN +12 MIN +16 MIN +12 MIN +12 MIN	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX ain Attenuation Range 30 dB MIN 20 dB MIN 22 dB MIN 15 dB MIN	2.0:1 VSWR 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 1.8:1 1.9:1
AMODE NO. CLA24-4001 CLA26-8001 CLA26-8001 CLA712-5001 CLA618-1201 AMPLIFIERS 1 Model No. CA001-2511A CA001-2511A CA56-3110A CA56-3110A CA612-4110A CA1315-4110A CA1315-4110A	Implifiers Freq (GH2) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4 6.0 - 18.0 WITH INTEGH Freq (GH2) 0.025-0.150 0.5-5.5 5.85-6.425 6.0-12.0 13.75-15.4 13.75-15.4	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -21 to +10 d XATED GAIN Gain (dB) MIN 21 23 28 24 25	S.0 MAA, S.3 TH Range Output Power Bm +14 to +1 Comparison Noise Figure (dB) Noise Figure (dB) Por 5.0 MAX, 3.5 TYP 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 2.2 MAX, 1.5 TYP 2.2 MAX, 1.5 TYP	Pange Psat P 1 dBm 18 dBm 18 dBm 19 dBm 19 dBm 19 dBm wer-out@P1dB 6 +12 MIN +18 MIN +16 MIN +12 MIN +16 MIN +16 MIN	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX ain Attenuation Range 30 dB MIN 20 dB MIN 15 dB MIN 20 dB MIN 20 dB MIN	2.0.1 VSWR 2.0.1 2.0.1 2.0.1 2.0.1 2.0.1 2.0.1 2.0.1 1.8.1 1.9.1 1.8.1 1.9.1
AMODE NO. CLA24-4001 CLA26-8001 CLA26-8001 CLA26-8001 CLA21-25001 CLA26-8001 CLA26-1201 CLA26-1201 AMPLIFIERS Model No. CA001-2511A CA001-2511A CA05-3110A CA56-3110A CA612-4110A CA1315-4110A CA1315-4110A CA1315-4110A	Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4 6.0 - 18.0 with INTEGH Freq (GHz) 0.025-0.150 0.5-5.5 5.85-6.425 6.0-12.0 13.75-15.4 15.0-18.0	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -21 to +10 d XATED GAIN Gain (dB) MIN 21 23 24 24 25 30	S.0 MAA, S.3 TH Range Output Power Bm +14 to +1 Comparison Port Noise Figure (dB) Port 5.0 MAX, 3.5 TYP 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 2.2 MAX, 1.5 TYP 2.2 MAX, 1.6 TYP 3.0 MAX, 2.0 TYP 3.0 MAX, 2.0 TYP	Pange Psat P 1 dBm 18 dBm 18 dBm 19 dBm 19 dBm 19 dBm wer-out @P1dB 6 +12 MIN +18 MIN +16 MIN +12 MIN +18 MIN +18 MIN	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX ain Attenuation Range 30 dB MIN 20 dB MIN 20 dB MIN 15 dB MIN 20 dB MIN 20 dB MIN 20 dB MIN	VSWR 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 1.8:1 1.8:1 1.8:1 1.85:1
AMODE NO. CLA24-4001 CLA26-8001 CLA26-8001 CLA26-8001 CLA712-5001 CLA618-1201 CAMPLIFIERS Model No. CA001-2511A CA05-3110A CA612-4110A CA1315-4110A CA1518-4110A CA1518-4110A Model No. Model No.	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4 6.0 - 18.0 with INTEGI Freq (GHz) 0.025-0.150 0.5-5.5 5.85-6.425 6.0-12.0 13.75-15.4 15.0-18.0 Ereq (GHz) C	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -21 to +10 d XATED GAIN Gain (dB) MIN 21 23 24 25 30 IERS	S.U MAA, S.S TH Range Output Power Bm +14 to +1 Comparison Noise Figure (dB) Por 5.0 MAX, 3.5 TYP 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 2.2 MAX, 1.5 TYP 3.0 MAX, 2.0 TYP Noise Figure dB	Range Psat P 1 dBm 18 dBm 19 dBm 19 dBm wer-out @P1-dB 6 +12 MIN +18 MIN +16 MIN +18 MIN +18 MIN +18 MIN +18 MIN	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX ain Attenuation Range 30 dB MIN 20 dB MIN 20 dB MIN 15 dB MIN 20 dB MIN 20 dB MIN 20 dB MIN 20 dB MIN 20 dB MIN	VSWR 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 1.8:1 1.8:1 1.8:1 1.85:1
Model No. CLA24-4001 CLA24-8001 CLA712-5001 CLA712-5001 CLA712-5001 CLA712-5001 CLA712-5001 CLA712-5001 CLA712-5001 CLA05-3110A CA612-4110A CA1315-4110A CA1518-4110A LOW FREQUE Model No. CA001-2110	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4 6.0 - 18.0 with INTEGI Freq (GHz) 0.025-0.150 0.55.5 5.85-6.425 6.0-12.0 13.75-15.4 15.0-18.0 Preq (GHz) 0.01-0	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -21 to +10 d XATED GAIN Gain (dB) MIN 21 23 24 25 30 IERS ain (dB) MIN 18	S.U MIAA, S.S. THP Range Output Power Bm +14 to +1 Comparison Noise Figure (dB) Por 5.0 MAX, 3.5 TYP 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 2.2 MAX, 1.5 TYP 3.0 MAX, 2.0 TYP Noise Figure dB Noise Figure dB P 4.0 MAX 2 TYP	Pange Psat P 1 dBm 18 dBm 18 dBm 19 dBm 19 dBm 19 dBm wer-out @P1-dB 6 +12 MIN +18 MIN +16 MIN +16 MIN +18 MIN +16 MIN +10 MIN +10 MIN	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX all dB MIN 20 dB MIN 20 dB MIN 20 dB MIN 20 dB MIN 20 dB MIN 3rd Order ICP +20 dBm	VSWR 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 1.8:1 1.8:1 1.85:1 VSWR 2.0:1
Model No. CLA24-4001 CLA24-8001 CLA26-8001 CLA712-5001 CLA18-1201 CLA018-1201 CLA018-1201 CLA018-1201 CLA018-1201 CLA018-1201 CA001-2511A CA05-3110A CA612-4110A CA1315-4110A CA1518-4110A LOW FREQUE Model No. CA001-2110 CA001-2211	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4 6.0 - 18.0 WITH INTEGI Freq (GHz) 0.025-0.150 0.025-0.150 0.5-5.5 5.85-6.425 5.0-12.0 13.75-15.4 15.0-18.0 Freq (GHz) 6.0-12.0 0.01-0.10	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -50 to +20 d LATED GAIN Gain (B) MIN 21 23 28 24 24 25 30 IERS ain (B) MIN 18 24	S.0 MIAA, S.3 TIP Range Output Power Bm +14 to +1 Comparison Poise Figure (dB) Noise Figure (dB) Poise 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 3.0 MAX, 2.0 TYP Noise Figure dB Pi 4.0 MAX, 2.2 TYP 3.5 MAX, 2.2 TYP	Range Psat P 1 dBm 18 dBm 18 dBm 19 dBm 19 dBm 19 dBm wer-out @P1-dB 6 +12 MIN +18 MIN +16 MIN +16 MIN +18 MIN +16 MIN +10 MIN +18 MIN +10 MIN +13 MIN	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX all dB MIN 20 dB MIN 20 dB MIN 20 dB MIN 15 dB MIN 20 dB MIN 20 dB MIN 3rd Order ICP +20 dBm +23 dBm	VSWR 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 1.8:1 1.8:1 1.8:1 1.85:1 VSWR 2.0:1
Model No. CLA24-4001 CLA26-8001 CLA712-5001 CLA712-5001 CLA712-5001 CLA712-5001 CLA001-2511A CA001-2511A CA05-3110A CA612-4110A CA1518-4110A CA1518-4110A CA001-2110 CA001-2211 CA001-2215	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4 6.0 - 18.0 WITH INTEGE Freq (GHz) 0.025-0.150 0.5-5.5 5.85-6.425 6.0-12.0 13.75-15.4 15.0-18.0 Freq (GHz) 6.0 0.025-0.150 0.012-0.18 SNCY AMPLIF Freq (GHz) Freq (GHz) 6.0 0.04-0.15 0.04-0.15	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -50 to +20 d LATED GAIN Gain (dB) MIN 21 23 28 24 24 25 30 IERS ain (dB) MIN 18 24 23	S.0 WHA, S.3 TH Range Output Power Bm +7 to +1 Bm +14 to + Image: Comparison of the stress of the	Pange Psat P 1 dBm 18 dBm 19 dBm 19 dBm 19 dBm 19 dBm 19 dBm 19 dBm 12 MIN +12 MIN +12 MIN +16 MIN +16 MIN +16 MIN +16 MIN +16 MIN +17 MIN +16 MIN +16 MIN +16 MIN +17 MIN +16 MIN +16 MIN +16 MIN +17 MIN +18 MIN	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX all dB MIN 20 dB MIN 20 dB MIN 20 dB MIN 20 dB MIN 20 dB MIN 20 dB MIN 3rd Order ICP +20 dBm +33 dBm +33 dBm	VSWR 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 1.8:1 1.8:1 1.8:1 1.8:5 1
Inducer No. CLA24-4001 CLA26-8001 CLA712-5001 CLA712-5001 CLA712-5001 CLA618-1201 AMPLIFIERS 1 Model No. CA01-2511A CA66-3110A CA56-3110A CA513-4110A CA1315-4110A CA1518-4110A CA001-2110 CA001-22110 CA001-22110 CA001-2211 CA001-22115 CA001-3113	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 7.0 - 12.4 6.0 - 18.0 9.0 WITH INTEGH Freq (GHz) 0.025-0.150 0.5-5.5 5.85-6.425 6.0-12.0 13.75-15.4 15.0-18.0 Erreq (GHz) G 0.025-0.150 0.375-15.4 15.0-18.0 9.01-0.10 0.04-0.15 0.01-0.10 0.04-0.15 0.04-0.15 0.02-0.150 0.021-1.0	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -50 to +20 d LATED GAIN Gain (dB) MIN 21 23 28 24 24 25 30 IERS ain (dB) MIN 18 24 25 30 IERS 24 25 30 IERS 28 24 25 30	S.0 WIAA, S.3 TH Range Output Power Bm +7 to +1 Bm +14 to + Image: Comparison of the provided states	Pange Psat P 1 dBm 18 dBm 19 dBm 19 dBm 19 dBm 10 MIN +12 MIN +16 MIN +18 MIN +18 MIN ower out @P1dB +10 MIN +13 MIN +23 MIN +17 MIN +17 MIN	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX ain Attenuation Range 30 dB MIN 20 dB	VSWR 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 1.8:1 1.8:1 1.8:1 1.8:1 1.8:1 1.8:1 1.8:1 1.8:1 2.0:1 2
Inducer No. CLA24-4001 CLA24-8001 CLA712-5001 CLA618-1201 AMPLIFIERS Model No. CA001-2511A CA05-3110A CA56-3110A CA1518-4110A CA1518-4110A CA001-2110 CA001-2215 CA001-2215 CA001-3113 CA002-3114	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4 6.0 - 18.0 WITH INTEGE Freq (GHz) 0.025-0.150 0.5-5.5 5.85-6.425 6.0-12.0 13.75-15.4 15.0-18.0 Erreq (GHz) G 0.024-0.15 0.01-0.10 0.04-0.15 0.01-1.0 0.04-0.15 0.01-1.0 0.01-2.0 0.01-2.0	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -50 to +20 d LATED GAIN Gain (B) MIN 21 23 28 24 25 30 IERS ain (dB) MIN 18 23 22 23 22 23 22 23 23 23 23 23 23 23	S.0 WIAA, S.3 TIP Range Output Power Bm +14 to +1 ATTENUATION Noise Figure (dB) 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 2.5 MAX, 1.5 TYP 3.0 MAX, 2.0 TYP Noise Figure dB P 4.0 MAX, 2.2 TYP 4.0 MAX, 2.2 TYP 4.0 MAX, 2.8 TYP 4.0 MAX, 2.8 TYP	Pange Psat P 1 dBm 18 dBm 19 dBm 19 dBm wer out @P1dB G +12 MIN +16 MIN +12 MIN +18 MIN +18 MIN ower-out @P1dB +10 MIN +13 MIN +13 MIN +13 MIN +13 MIN +23 MIN +17 MIN +20 MIN +20 MIN	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX ain Attenuation Range 30 dB MIN 20 dB	VSWR 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 1.8:1 1.8:1 1.8:1 1.8:1 1.8:1 1.8:1 1.8:1 1.8:1 1.8:1 2.0:1 2
Inducer No. CLA24-4001 CLA26-8001 CLA712-5001 CLA618-1201 AMPLIFIERS Model No. CA001-2511A CA05-3110A CA56-3110A CA612-4110A CA1518-4110A CA001-2110 CA001-2110 CA001-2215 CA001-2113 CA002-3113 CA002-3114	MPLIFIERS Freq (GHz) Ir 2.0 - 4.0 2.0 - 6.0 7.0 - 12.4 6.0 - 18.0 WITH INTEGF Freq (GHz) 0.025-0.150 0.55.5 5.85-6.425 6.0-12.0 13.75-15.4 15.0-18.0 Freq (GHz) G 0.01-0.10 0.04-0.15 0.04-0.15 0.01-1.0 0.01-2.0 0.01-3.0 0.01-3.0 0.01-4.0	put Dynamic F -28 to +10 d -50 to +20 d -21 to +10 d -21 to +10 d Call Gain (B) MIN 21 23 24 24 25 30 IERS ain (dB) MIN 18 24 23 28 27 18 28 27 18 32	S.0 MIAX, S.3 TIP Range Output Power Bm +14 to + Sm +14 to + Sm +14 to + Sm +14 to + Sm +14 to + Max 1.5 TYP 2.5 MAX, 1.6 TYP 3.0 MAX, 2.0 TYP Noise Figure dB P 4.0 MAX, 2.2 TYP 4.0 MAX, 2.2 TYP 4.0 MAX, 2.8 TYP	Part Part Range Psat P 1 dBm 18 dBm 19 dBm 19 dBm 19 dBm 12 MIN +12 MIN +18 MIN +18 MIN +18 MIN +16 MIN +16 MIN +18 MIN +16 MIN +13 MIN +10 MIN +13 MIN +10 MIN +23 MIN +23 MIN +25 MIN +25 MIN +26 MIN +25 MIN	+34 dBm ower Flatness dB +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX +/- 1.5 MAX an Attenuation Range 30 dB MIN 20 dB M	2.0:1 VSWR 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 2.0:1 1.8:1 1.8:1 1.8:1 1.8:1 1.8:1 1.8:1 VSWR 2.0:1 2.0:

CIAO Wireless can easily modify any of its standard models to meet your "exact" requirements at the Catalog Pricing. Visit our web site at **www.ciaowireless.com** for our complete product offering.

> Ciao Wireless, Inc. 4000 Via Pescador, Camarillo, CA 93012 Tel (805) 389-3224 Fax (805) 389-3629 sales@ciaowireless.com

Ciao wireless Electronic warfare (EW) has long relied on the development of novel technologies such as LiDAR and radar, typically to gain an edge over an adversary or provide advanced warning of an adversary's actions. Smart military-guidance systems once referred to steering by Global Positioning System (GPS) satellite signals. However, operations that take place in areas in which GPS signals aren't available, or are being jammed by an adversary, require alternative guidance based on available AI and ML technologies.

Smart weapons and guidance systems use AI and ML empowered by embedded computers to "share" some of the decision-making concerning a response with their human controllers. Weapons in which human guidance is still required are known as semi-autonomous devices. Ultimately, organizations such as the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army Combat Capabilities Development Command Armaments Center (CCDC) are developing different types of smart weapons with an eye toward fully autonomous versions that can make a decision on a strike or respond on their own.

DARPA recently announced that six teams will receive funding as part of the Next-Generation Nonsurgical Neurotechnology (N3) program to develop technology for two-way communication between human brains and machines without requiring surgery. The program assumes that humans, overwhelmed by the amount of data received on the battlefield, would have AI-powered machines as partners and require almost instantaneous response times.

Humans now suffer delays in decision-making with machines due to the way the nervous system interacts with machine microprocessors. The program would explore the use of viral vectors or viruses that carry proteins into the brain for detection of light from neurons. By detecting the activity of neurons, it may also be possible to determine a human's thoughts and thought processes for faster interaction with AI-driven systems. A government-appointed panel has reviewed the benefits and risks of smart weapons on the battlefield. The independent National Security Commission on Artificial Intelligence (NSCAI), created in 2018, recently completed a 130-page draft report that's scheduled for submission to the U.S. Congress this month. It recommends the use of AI and ML technologies for military use, noting that AI-enabled weapons are expected to make fewer mistakes than human combatants and can play a vital, positive role in national security.

uture battlefield strategies are being planned with AI as a vital component in analysis of battlefield situations on land, at sea, and in the air.

The panel was led by Eric Schmidt, the former chief executive of Google. It was opposed by a coalition of non-governmental organizations and 30 countries that has pushed for a treaty banning smart weapons on the grounds that human control is necessary for the ethical management of the battlefield.

Future battlefield strategies are being planned with AI as a vital component in analysis of battlefield situations on land, at sea, and in the air. AI will be used as part of embedded EW systems to provide augmented-reality (AR) information to operators.

The AR data will be collected by many different battlefield sensors, such as those aging radar and LiDAR systems. It will be presented on different forms of displays to human soldiers and/or smart electronic weapons systems that will be programmed to respond to the inputs via actions that include identifying threats as well as friendly troops, classifying threats, and prioritizing targets.

The Path to Autonomy

Systems currently called smart weapons are limited in their autonomous capabilities, although the use of AI and ML technologies is expected to increase significantly within the next decade. The concept of computing machines for the battlefield isn't new. In fact, it's been in development since the aftermath of World War II with the creation of tables of firing statistics that were analyzed and used to increase the targeting accuracy of ballistic missiles.

Military system designers are planning for three levels of AI: artificial narrow intelligence (ANI) with limited decision-making capabilities for specific tasks; artificial general intelligence (AGI) with decision-making capabilities that can match human intelligence for any task; and artificial superintelligence (ASI) with decision-making capabilities that exceed human intelligence for any task.

Although the vision of many system planners is for fully autonomous weapons operating without supervision, many applications will require advanced humanmachine training and interaction. The use of multiple robotic systems is one such case.

For example, it might apply to remote direction of a "flock" of miniature unmanned aerial systems (UAS) for surveillance purposes, or when miniature drones armed for attack must be guided to a target and detonated. This need for a reliable, remote man-machine interface under battlefield conditions emphasizes the importance of military-grade communications networks capable of handling large amounts of data under hostile operating conditions, including cyberattacks.

Increasing Effectiveness

A starting point for many smart weapons is the application of AI and ML to EW systems for improved performance, such as increased targeting range and accuracy. Northrop Grumman Corp. was recently contracted by DARPA's Tactical Technology Office (TTO) for an advanced technology weapon capable of much greater range and accuracy than current systems when deployed against airborne threats.

Critical Moments call for Critical Products

Trust Coilcraft CPS for the battle-proven magnetics you need when your mission is on the line

Our critical-grade RF and Power inductors are built to withstand the most punishing conditions imaginable, including extreme temperatures, thermal shock, G-forces, EMI and vibration.

- Tin-lead (Sn-Pb) terminations for the best possible board adhesion. RoHS terminations also available.
- Extended temperature ranges (-55°C to +200°C)
- Vibration testing to 80 G / shock testing to 1000 G

We also offer comprehensive product testing and validation services in accordance with MIL-STD-981, as well as custom screening to your electrical and physical specifications.

Learn more about how our battle-tested components will keep your mission on target. Call or visit us online today!

800.981.0363 847.639.6400 www.coilcraft-cps.com

Proven Interconnect Solutions

INDUSTRY LEADING INNOVATION

Precision Adapters DC to 110 GHz

- Cost-effective solution with near metrology grade performance
- Rugged and durable, delivering high repeatability and accuracy
- · Ideal for critical production and testing applications

End Launch Connectors DC to 110 GHz

- Robust, reusable, repairable, solderless
- Unique bottom clamp design for effective grounding
- Narrow body offers same high performance in 1/3 less space

Contact us for a quote +1 (480) 783-0201

southwestmicrowave.com

Smart Weapons

General Atomics and Lockheed Martin also received contracts as part of the first phase of the program. Appropriately named LongShot, the program will leverage the contractors' expertise in AI and digital signal processing (DSP) to develop new lethal-engagement concepts for unmanned aerial systems (UAS) powered by multiple propulsion systems, capable of being deployed by bombers as well as much smaller fighter aircraft. The Long-Shot system is being designed for external transport on fighters and internal transport on bombers.

According to Jaime Engdahl, the program director for kinetic weapons and emerging capabilities at Northrop Grumman, the development of smart weapons is a necessary response to the growing number of robotic and autonomous threats. He said, "Our collaboration with DARPA is the critical first step in the development of innovative operational concepts and solutions that will enhance our warfighter's combat capability against a rapidly growing threat."

Concerning LongShot, Engdahl added, "The LongShot program enables us to combine our digital engineering skillset with our extensive knowledge in advanced technology weapons, autonomous systems, and strike platforms to increase weapons range and effectiveness."

The pairing of Lockheed Martin's Long-Range Anti-Ship Missile (LRASM) and BAE Systems' missile seeker technology also combines AI techniques with sensor fusion to steer the missile over distances. as far as 200 nautical miles. The system has been in production for several years. It was initially part of a joint project by DARPA, the U.S. Navy (USN), and U.S. Air Force (USAF) to create an anti-ship missile that could launch from a USN F/A-18E/F Super Hornet fighter/bomber or USAF B-1B Lancer bomber. As GPS-jamming capabilities have increased among adversaries, demand for the LRASM has grown—a weapon that can cover long distances without relying on GPS, using the LRASM's on-board radar and semiautonomous guidance systems.

Thinking Through Weather

Current intelligent weapons systems often use AI and ML to enhance operation under adverse conditions, such as the aptly named StormBreaker from Raytheon Technologies and its Raytheon Missiles & Defense division. The smart weapon (*Fig. 1, page 22*) is designed to destroy moving targets despite the worst weather conditions. It autonomously detects and classifies moving targets in darkness, bad weather, through smoke, and even in the dust stirred up by helicopters over a battlefield.

StormBreaker's built-in intelligence is aided by a multimode seeker with a host of powerful sensors, including a millimeter-wave radar system, an infrared (IR) imaging system to differentiate targets from friendly forces in foul weather, and a semiactive laser system that can track ground-based or airborne targets. Because the data from the seeker's multiple sensors are shared, the system can accurately identify and track fixed or moving targets even under the most challenging environmental conditions.

The StormBreaker system is extremely compact, allowing fighter jets to carry multiple systems. An F-15 fighter jet can carry seven groups of four StormBreaker smart weapons or a total of 28 munitions systems. The system provides high precision so that explosions are kept within a small footprint.

StormBreaker also is intelligent, with a high-speed data link that allows a fighter pilot to interact with the smart weapons system and change targets even as the weapon is gliding to the ground toward its initial target. The system has been approved for use on the F-15E fighter, and the U.S. Air Force and Navy have begun integration of StormBreaker systems into F-35 Joint Strike Fighter (JSF) and F/A-18E/F Super Hornet fighter aircraft.

As part of smart-weapons systems, AI and ML technologies can be used for guidance, intelligence collection, surveillance, and in some cases, as part of electronic countermeasures (ECM) responses to an adversary's AI-guided robotic systems. For example, Boeing has been working with

Lockheed Martin on the development of a next-generation seeker for the U.S. Army's Patriot Advanced Capability-3 (PAC-3) missile system while continuing production of current generations of the PAC-3 seeker. The seeker is a key component in the guidance system of the PAC-3 missile system (*Fig. 2*), used as a defense against enemy aircraft, tactical ballistic missiles, and cruise missiles.

Defending against autonomous threats is considered an essential part of future

battlefield planning. On that front, Boeing recently upgraded its directed-energy weapon, the Compact Laser Weapon System (CLWS) for a U.S. Department of Defense (DoD) customer. The upgrades include increased beam power and reliability for situations involving growing numbers of larger unmanned aerial vehicles (UAVs) on the battlefield.

Kurt Sorenson, Boeing program manager for CLWS, explains, "The upgraded units will provide warfighters with enhanced protection against larger and more numerous hostile unmanned aircraft systems. They will also enable them to defeat threats more quickly and efficiently." The CLWS has proven successful against UAVs in numerous exercises requiring target acquisition and tracking of multiple moving miniature aircraft.

Intelligent Countermeasures

One aspect of learning to fight alongside smart weapons is effective integra-

PUC I Made in the USA

Automate Your RF Connectivity: DC-50GHz

- Configurations from 2x1 to 32x32, up to 50GHz
- Nx1, Transfer and Matrix switching configurations
- Modules AND systems, relays or solid-state
- Compact 1RU, redundant power supplies, dual AC
- High reliability for ATE or communications
- Field proven performance, quality and reliability
- World-class quality and support (ISO 9001:2015)

Our modular UC1 switch units make automating your RF signal connectivity easy! Automate with 10/100 Ethernet & Mult-Serial control ports, menu driven front panel control, redundant power supplies and field expandable configurations with PUC1 modules. Modules can be remotely located up to 400ft if needed. Just install the PUC1 module that suits your needs.

So.....looking for a cost effective and reliable alternative for routing your RF and critical signals? Our comprehensive product line can deliver the perfect solution! See our website for additional product information: **uswi.com**

A/V - Digital - L-Band - RF / IF - TTL / LVDS - Microwave

Universal Switching Corporation

7671 North San Fernando Road Burbank, CA 91505 USA

Global Signal Switching and Distribution Specialists

Fax +1 818-252 Email sales@usw Web uswi.com Twitter @US_Corp

Phn

+1 818-381-5111 +1 818-252-4868 sales@uswi.com uswi.com @US_Corp

3. The Smart D2 is an autonomous ECM subsystem that combines AI with secure data collection and AI-guided analysis. It can be integrated into existing and future ECM systems. (Courtesy of BAE Systems)

tion within a working battlespace and not discarding current systems for the sake of "more intelligent" ones. The Smart D2 system from BAE Systems is an automated threat-management system designed for integration into current and future ECM systems. It provides AI, secure communications, and automation in the form of core components such as a programmer, sequencer, and dispenser. The programmer features a regularly updated database of threats and can identify optimum payloads, quantities, and dispensing intervals of weapons used for each ECM response.

The Smart D2 system incorporates NATO's standard Smart Stores Communication Interface (SSCI) for communication between dispenser system and smart ECM systems, and provides two-way communication of mission-critical information for human pilots to make their own decisions about appropriate ECM responses (*Fig. 3*). A Smart D2 System can be integrated into an aircraft's ALE-47 Airborne Countermeasures Dispenser System. Instead of replacing an ALE-47 system, its main elements are swapped out for Smart D2 elements.

On the ground, the U.S. Army Research Laboratory recently expanded its Robotics Research Collaborative Campus (R2C2) north of Baltimore, Md.

4. ARL is advancing its knowledge of ground-based robotics systems at its Aberdeen Proving Ground, pushing the limits of AI processing to adapt to difficult terrain. (Courtesy of the U.S. Army Research Laboratory)

to evaluate unmanned ground vehicles (UGVs) and terrestrial smart weapons. The Aberdeen Proving Ground uses about 200 acres for testing of ground-based systems (*Fig. 4*) and simulation of battlefield conditions for the use of AI-driven robotics systems.

The in-field testing follows computerbased simulations of UGVs, providing test data based on a realistic operating environment. Both hardware and software, such as the ARL Autonomy Stack of algorithms, can be checked in the outdoor laboratory to evaluate such effects as frequency and erratic terrain changes and large obstructions. The test results help develop ML solutions for future performance improvements in the UGVs. Thinking machines and smart weapons may be some years away from sharing a battlefield with human combatants. Nonetheless, major defense organizations such as DARPA and the DoD are committed to the development of weapons leveraging AI and ML technologies capable of sharing with decision-making processes in data-dense environments.

The growing use of small UAVs or drones, for example, can create extremely hazardous operating environments where human warriors with conventional weapons lack the necessary firepower to defend against swarms or hordes of robotic adversaries. A generation of human warriors raised on video games may find that reality is starting to resemble those games.

Connecting Minds, Exchanging Ideas

Connecting Minds. Exchanging Ideas.

6-11JUNE 2021 Atlanta Come explore the latest and greatest communications, aerospace, automotive, IoT, THz and other emerging

technologies.

IMS2021 and Microwave Week will be comprised of in-person and virtual participation options.

Pick up your badge onsite Get equal access online

The best of both worlds

- IMS2021 and Microwave Week offers something for everyone, including:
- Technical Program Oral / Poster Sessions, Workshops, Technical Lectures and Panel Sessions
- World's largest RF and microwave commercial exhibition
- Connected Future Summit showcasing wireless technologies for mobility, V2X and IoT
 - RF Bootcamp for non-microwave engineering disciplines
- Industry workshops and MicroApps presentations by industry experts, explaining the technology behind their products
- Networking events for Amateur Radio (HAM) enthusiasts,
 Women in Engineering (WIE)/Women in Microwaves (WIM),
 and Young Professionals (YP)
- NEW Automotive Pavilion on the show floor
- Co-located conferences include RFIC and ARFTG

Register by 10 May 2021 to receive the best rates! www.ims-ieee.org

New Products

Arbitrary Waveform Generator Leads Way With 256-GS/s

Keysight Technologies recently announced the release of its new M8199A, a 256-GS/s arbitrary waveform generator (AWG) with 65 GHz of analog bandwidth, which the company states delivers twice the sampling rate, 50% more analog bandwidth, and increased ENOB compared to other AWGs on the market. The M8199A features four channels with 128 GS/s and two channels of 256 GS/s with interleaving, and sports a 65-GHz nominal bandwidth of up to 80 GHz with roll-off calibration. The increased

performance is driven by a new digital-to-analog converter application-specific integrated circuit (DAC-ASIC), translating the memory data into an analog signal. Keysight states that it has also created a new package that avoids soldering sensitive radio frequency (RF signals) by placing an RF connector at the DAC-ASIC to avoid signal degradation.

KEYSIGHT TECHNOLOGIES, https://www.keysight.com/en/pd-3076690-pn-M8199A/

High-Power Amplifier Targets 5G Apps

Spacek Labs' solid-state, high-power amplifier, Model SP392-35-33, maintains excellent performance characteristics from 36 to 41 GHz. With a saturated output power greater than 33 dBm, it is a candidate for applications such as 5G. The unit has a nominal gain of 38 dB with VSWR less than 2:1 using 2.92-mm coaxial connectors (waveguide I/O available). The amplifier requires a bias voltage of +8 V dc with 2.4 A quiescent current and ~4 A at 1-dB gain compression. It is supplied with a heat sink and dc fans which are removable for integration. Overall size without the heat sink is $1.70 \times 1.54 \times 0.31$ in. (43.18 x 39.12 x 7.87 mm).

SPACEK LABS, www.spaceklabs.com

Ecosystem Provides for Analog Voice Activity Detection

Aspinity's Voice-First Evaluation Kit (EVK2) is a complete ecosystem providing an ultra-low-power edge processing platform for analog voice activity detection and preroll. The system allows developers to integrate analog machine learning and analog data compression into batteryoperated voice-enabled devices, including hearables/wearables, smart speakers, and smart TV remotes. The EKV2 features the company's

RAMP (Reconfigurable Analog Modular Processor), which uses near-zero power to analyze raw analog microphone data at the start of a signal chain to determine if a voice is present before triggering a wake-word engine. It also minimizes the power-on time of an ADC converter and WWE (Wake-Word Engine), increasing battery life by up to 10X. **ASPINITY,** https://www.aspinity.com/Download-EVK2-Product-Brief

Power-Saving Infrared LED Serves VR/MR/AR Applications

ROHM's CSL1501RW ultra-compact side-emitting (side view) infrared LED is well-suited for head-mounted displays, industrial headsets, and VR/MR/ AR (xR, virtual reality) gaming systems. The CSL1501RW delivers a peak wavelength of 860 nm in an industry-small (1.0 x 0.55 mm, t = 0.5 mm) side-view design that emits light parallel to the mounting surface, providing exceptional design flexibility. In addition, ROHM leverages its strengths in element manufacturing to improve luminous efficiency and reduce power consumption by more than 20%. The device serves as a light source for eye

tracking in VR/MR/AR applications that require greater performance.

ROHM, https://www.rohm.com/products/optical-sensors/infrared-light-emitting-diodes/surface-mount-type-sideview/csl1501rw-product

Directional Coupler Monitors 40 to 65 GHz

Mini-Circuits' model ZCDC10-E40653+ wideband directional coupler maintains high directivity with excellent coupling flatness from 40 to 65 GHz. Directivity is typically 19 dB from 40 to 50 GHz and typically 17.9 dB from 50 to 65 GHz with 10-dB coupling within ±0.4 dB across the full frequency range. Mainline insertion loss (including coupling loss) is typically 1.4 dB from 40 to 50 GHz and 1.7 dB from 50 to 65 GHz. Input and output return loss is typically 21.1 dB from 40 to 50 GHz and 22.6 dB from 50 to 65 GHz. The RoHS-compliant directional coupler can pass as much as 300-mA dc current from input to output

and can handle as much as 12-W RF input power across the full frequency range. The $50-\Omega$ directional coupler is well-suited for testing and monitoring millimeter-wave signal power levels. It measures $1.25 \times 0.63 \times 0.50$ in. (31.75 \times 16.00 \times 12.70 mm) in a rugged metal case and is supplied with 1.85-mm female connectors. The coupler has an operating temperature range of -55 to +100°C.

MINI-CIRCUITS, https://www.minicircuits.com/WebStore/dashboard.html?model=ZCDC10-E40653%2B

Validation Test for 5G mmWave

(Continued from page 18)

measurement antenna. However, in a production environment, the setup will mostly involve use of multiple additional components.

Figure 6 shows a four-DUT OTA test setup. Apart from the mmWave test equipment, DUT, and OTA chambers,

the setup requires use of multiple RF switches, control box, measurement antennas, RF cables, and adapters. Each of these elements exhibits a certain performance loss or gain based on frequency of operation. For this reason, care must be taken to ensure:

6. This diagram depicts a representative multi-DUT OTA test setup.

- The components are compatible with each other, enabling seamless integration.
- The entire setup is well calibrated, with path loss determined and taken into consideration when making device measurements.
- Choice of a chamber with a farfield distance proportional to the antenna module under test, thus limiting the OTA path loss.
- Avoiding the use of components that have limited operating life, minimizing operational cost.
- Software-automation tools enable simple customization and deliver fast test times.

Overcoming Test Challenges for Success

5G mmWave is still in its early stages of deployment, with evolving use models, implementation, and test methodologies. Nevertheless, with an increasing number of devices launching in the mobile and fixed-wireless-access ecosystem, ensuring quality by overcoming the test challenges outlined in this article will continue to be important to the success of these early products.

InfoCenter

ADVERTISER

ANRITSU COMPANY	IFC
	www.anritsu.com/test-measurement
CIAO WIRELESS INC	
	www.ciaowireless.com
COILCRAFT, INC	
	www.coilcraft-cps.com
COILCRAFT, INC	
	www.coilcraft.com
COPPER MOUNTAIN TECHNOLOGIES	5
	www.coppermountiantech.com
DBM CORP, INC.	IBC
	www.dbmcorp.com
ECLIPSE MDI	
	www.eclipsemdi.com/modules
HEROTEK INC.	
	www.herotek.com
IMS	
	www.ims-ieee.org
PASTERNACK	FC, 8, 9
	www.pasternack.com
	www.fairviewmicrowave.com

Subscription Assistance and Information: (ISSN 0745-2993)

Microwaves & RF is published monthly, except for a combined issue in January/February and July/August. **Microwaves & RF** is sent free to individuals actively engaged in high-frequency electronics engineering. In addition, paid subscriptions are available. Subscription rates for U.S. are \$95 for 1 year (\$120 in Canada, \$150 for International). Published by Endeavor Business Media, 1233 Janesville Ave., Fort Atkinson, WI 53538. Periodicals Postage Paid at Fort Atkinson, WI and additional mailing offices. POSTMASTER: Send change of address to Microwaves & RF, PO Box 3257, Northbrook, IL 60065-3257. For paid subscription information, please contact Microwaves & RF at PO Box 3257, Northbrook, IL 60065-3257. Canadian GST #R126431964.

ADVERTISER

PAGE

IQ ANALOG	7
	www.iqanalog.com
IRONWOOD ELECTRONICS	
	www.ironwoodelectronics.com
MICRO LAMBDA WIRELESS, INC.	BC
	www.microlambdawireless.com
MINI-CIRCUITS	14, 15, 20
	www.minicircuits.com
NSI-MI TECHNOLOGIES	
	www.nsi-mi.com
PLANAR MONOLITHICS, INC. PMI	
	www.pmi-rf.com
POLYFET RF DEVICES	
	www.polyfet.com
PULSAR MICROWAVE	
	www.pulsarmicrowave.com
RIGOL USA	
	www.rigolna.com/VNA
SOUTHWEST MICROWAVE INC	
	www.southwestmicrowave.com
UNIVERSAL SWITCHING CORPORATION	
	www.uswi.com

PAGE

This index is provided as an additional service by the publisher, who assumes no responsibility for errors or omissions.

Copying: Permission is granted to users registered with the Copyright Clearance Center, Inc. (CCC) to photocopy any article, with the exception of those for which separate copyright ownership is indicated on the first page of the article, provided that a base fee of \$1.25 per copy of the article plus 60 cents per page is paid directly to the CCC, 222 Rosewood Dr., Danvers, MA 01923. (Code 0745–2993/02 \$1.25 +.60) Copying done for other than personal or internal reference use without the expressed permission or bulk orders should be addressed in writing to the publisher. Copyright 2021 • Endeavor Business Media • All rights reserved. Printed in the U.S.

Ultra high bandwidth Payload & RF Multipath Link Emulator

Just released

Sophisticated high bandwidth (up to 600MHz) emulation of physical layer RF link effects channel modeling (delay, Doppler, AWGN, Multipath) and hardware in the loop impairments modeling (programmable Group delay, Phase noise, gain/compression distortion and non-linearity AM/AM, AM/PM simulation etc.

Comprehensive range of instruments from 72 MHz to 600 MHz bandwidth with a wide RF frequency tuning range.

Contact dBm for specifications, pricing information and demonstration/evaluation units.

- **RF physical layer Link emulation** Point to Point UHF/VHF radio testing **Real time control for Arial Vehicle (UAV) testing** Payload and ground station emulation
- Multipath, 12 paths @ 600MHz BW

dBmCorp, Inc Tel (201) 677-0008 Fax (201) 677-9444

email: info@dbmcorp.com

www.dbmcorp.com

Micro Lambda's Bench Test Boxes... Simple and Easy to Use!

MLBS-Synthesizer Test Box - 2 to 20 GHz

Standard models cover the 2 to 8 GHz, 8 to 20 GHz and 2 to 20 GHz frequency bands. Tuning consists of a control knob, key pad, USB and Ethernet connections. Units provide +10 dBm to +13 dBm output power levels and either 30 dB or 60 dB of power leveling is available. Units are specified over the lab environment of +15°C to +55°C, are CE certified and LabVIEW compatible.

Units are provided with a power cord, USB cable, Ethernet cable, CD incorporating a users manual, guick start guide and PC interface software.

MLBF-Filter Test Box – 500 MHz to 50 GHz

Standard models utilize any Bandpass or Bandreject filter manufactured by Micro Lambda today. Bandpass filter models cover 500 MHz to 50 GHz and are available in 4, 6 and 7 stage configurations. Bandreject (notch) filter models cover 500 MHz to 20 GHz and are available in 10, 12, 14 and 16 stage configurations. Units are specified to operate over the lab environment of +15°C to +55°C, are CE certified and LabVIEW compatible.

Units are provided with a power cord, USB cable, Ethernet cable, CD incorporating a users manual, guick start guide and PC interface software.

See our complete line of wideband, low noise components

MLSP-series Synthesizers

MLMS-series MLTO-series Synthesizers 600 MHz to 20 GHZ 250 MHz to 32 GHz 2 to 20 GHz

MLUN-series

TO-8 Oscillators Bandreject Filters 350 MHz to 18 GHz

www.microlambdawireless.com

"Look to the leader in YIG-Technology"