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I
n Part 1 of this two-part series, we covered the current chal-
lenges that confront spectrum operations in an evolving 
electromagnetic landscape. We also discussed the transfor-
mative role of test and measurement tools. 
Here in Part 2, we highlight the paradigm shift brought 

forth by cognitive radar and AI’s integral role in electromag-
netic dominance, signifying a leap to more sophisticated and 
efficient spectrum management. Through examples of real-
world applications, the discussion touches on the practical 
implications of these advances. It also addresses the inher-
ent technical challenges that accompany the course toward 
a more secure and technologically adept future in the realm 
of spectrum operations.

The Rise of Cognitive Radar and Cognitive Spectrum 
Management

Early radar systems, limited as they were by fixed rules, 
lacked the adaptability required for dynamic threat environ-
ments. To empower radar systems to operate more effective-
ly in new environments and situations, researchers began 
integrating faculties associated with biological cognition, 
such as perception, thinking, judging, problem-solving, and 
remembering, into radar systems.

One might compare a traditional radar system to early 
versions of automotive cruise control, which maintain a 
constant speed but can’t adapt to changing traffic conditions 
or obstacles on its own. 

In contrast, cognitive radar aims to operate like a fully au-
tonomous self-driving car 
equipped with AI. Such in-
telligent vehicles don’t sim-
ply maintain speed. Rather, 
they sense and understand 
their environment; make 
decisions based on real-
time data regarding traffic, 
road conditions, and unex-
pected obstacles; and adapt 
their driving accordingly. 

Similarly, cognitive ra-
dar continuously scans its 
environment, intelligently 
adjusting its operating 
parameters in response to 
changing conditions, and 
then makes autonomous 
decisions about how to 
best detect and track tar-
gets in rapidly changing 
and adversarial environ-
ments. 

The Intelligent Future of 
Spectrum Visibility (Part 2)
Take a tour through the paradigm shift brought forth by cognitive radar and AI’s 
integral role in electromagnetic dominance.

1. Cognitive spectrum management (CSM) uses advanced algorithms to continuously analyze patterns in 

spectrum usage and predict future spectrum usage based on historical and real-time data.
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Cognitive spectrum management (CSM) represents a 
revolutionary shift from traditional, static spectrum man-
agement to a dynamic, intelligent system that leverages AI 
and machine learning. At its core, CSM uses advanced algo-
rithms to continuously analyze patterns in spectrum usage 
and predict future spectrum usage based on historical and 
real-time data (Fig. 1). 

RF instruments play a vital role in the creation and de-
ployment of cognitive radar and CSM as extremely sensitive 
acquisition engines and computing nodes that can sample, 
process, record, and share vast amounts of spectrum data. 
This data feeds into AI algorithms that learn and evolve, 
constantly improving the system’s ability to manage the 
spectrum. The following are among the most popular and 
promising types of algorithms for cognitive RF systems:

Neural Networks and Deep Learning in Cognitive RF 
Systems

These algorithms are particularly ef-
fective in recognizing complex patterns 
in spectrum usage. Based on large train-
ing sets with diverse types of signals 
from known electromagnetic environ-
ments, they can map a set of inputs to a 
set of desired outputs. 

For instance, a deep neural network 
(Fig. 2) can be trained to take in vari-
ous types of signals received over the 
air (inputs) in a crowded spectrum en-
vironment. Then it can classify those 
signals into communication signals, ra-
dar pulses, unmanned-aircraft-system 

(UAS) control channels, interference, 
licensed or unlicensed broadcasts, and 
other types of categories (outputs).

Reinforcement Learning in Cognitive 
RF Systems

In contrast to neural networks, re-
inforcement-learning (RL) algorithms 
learn not by identifying patterns from 
training sets, but by perceiving the state 
of the environment and interacting with 
it (Fig. 3). 

In RL, the goal is for the algorithm 
(the “agent”) to learn a specific task or 
set of behaviors, like how the police 
trains K9 dogs to sniff out explosive 
substances. The RL agent learns through 
trial and error, exploring different ac-
tions and observing the outcomes, as 
the K9 would try various approaches to 

understand what the trainer wants it to do. The trainer gives 
positive outcomes (or “rewards”) to the agent when it per-
forms the right action and negative outcomes, or lack of a 
reward, for the wrong actions.

In the case of spectrum operations, an autonomous ra-
dio transmitter system might be rewarded for increasing 
the signal-to-noise ratio of its output until it starts to affect 
neighboring channels, changing the state of the environ-
ment, and failing to get rewards. Through experimentation, 
feedback, and gradual adaptation, RL agents improve their 
performance and learn the desired behavior or task. 

The goal of this machine-learning technique is to learn a 
policy. Eventually, the RL agent becomes proficient in the 
task, consistently making choices that yield the highest re-
wards depending on the state of the engagement, having 
learned the optimal “policy” based on the state of the en-
gagement. 

To illustrate this point in radio operations, consider RL 

3. This diagram depicts a reinforcement-learning approach with human feedback.

2. Shown is a diagram of a deep neural network for AI/ML applications.
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algorithms continuously sensing the environment, and then 
managing and adapting the frequency allocation of commu-
nication networks to avoid interference and jamming. 

By receiving quantitative and qualitative feedback on 
current conditions and the effectiveness of each frequency 
choice (such as received signal strength, signal clarity, and 
resistance to jamming), the RL system learns to select the 
optimal frequencies under varying conditions. Over time, it 
becomes adept at predicting and avoiding frequencies likely 
to experience interference, ensuring more reliable commu-
nications.

Support Vector Machines in Cognitive RF Systems
Support vector machines (SVMs) are a type of supervised 

machine-learning algorithm used primarily for classifica-
tion and regression tasks. They work by finding the decision 
boundary that best separates different classes of data points. 
SVMs excel in their ability to handle complex classification 
problems with clear margin of separation.

Spectrum operations systems can use SVMs to distinguish 
between friendly, hostile, and neutral signals. By training an 
SVM with examples of various signal types (including their 
frequency, modulation, and other characteristics), it can 
learn to accurately identify the nature of new signals it en-
counters. This is crucial for threat assessment and decision-
making in spectrum operations scenarios. 

In Figure 4, the spectrum-monitoring system detects and 
observes various transmitters both outside (red) and inside 
(yellow) a defined home base perimeter using received sig-
nal strength indicators (RSSI), angle of arrival (AoA), signal 
demodulation, and other characteristics. Here, the SVM al-
gorithm might find a decision boundary between them by 
squaring their x,y location and using a plane as a decision 
boundary.

Time-Series Analysis in Cognitive RF Systems
In the context of machine learning and artificial intelli-

gence, time-series analysis involves examining a sequence 

of data points collected over time to identify underlying pat-
terns, trends, and correlations.

By analyzing historical data on spectrum usage, machine-
learning models can forecast periods of high or low activ-
ity. This enables engineers to plan operations during times 
of lower congestion or prepare for expected increases in 
communications or jamming activities when these are most 
likely to occur. 

Similarly, machine-learning models trained on normal 
spectrum usage patterns can identify anomalies when they 
occur. This might include unexpected spikes in signal activity 
or the sudden appearance of unfamiliar signal types, prompt-
ing further investigation or immediate countermeasures.

These algorithms anticipate changes and adapt proactively 
to enhance spectrum efficiency, minimize interference, and 
improve the security and reliability of spectrum operations.

AI Algorithms on Test and Measurement 
Instrumentation

Instruments such as arbitrary waveform generators 
(AWGs), vector signal generators (VSGs), and real-time 
spectrum analyzers (RSAs) will also benefit from AI al-
gorithms. They will pave the way to developing real-time 
generation, analysis, and manipulation of high-fidelity, pre-
cision signals based on the evolving electromagnetic envi-
ronment. 

AI algorithms can analyze data from one or multiple syn-
chronized RSAs to identify patterns, threats, and opportuni-
ties within the spectrum. Such algorithms will also enable 
AWGs to dynamically generate optimized waveforms that 
counteract interference, jamming, or spoofing attempts, or 
to adjust for more efficient spectrum usage. 

This synergy facilitates the creation of responsive and 
adaptive testbeds for innovative spectrum management and 
electronic warfare (EW), where systems can learn from past 
actions, predict future scenarios, and make decisions to op-
timize performance and effectiveness in real-time.

4. This diagram illustrates how an SVM algorithm might apply a decision boundary to distinguish between datasets.
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Technical Challenges in AI Decision-Making
Although the integration of AI-driven systems into elec-

tromagnetic-spectrum operations brings transformative ad-
vantages, it also introduces a set of challenges that technolo-
gists and policy makers need to address carefully. 

Acquiring and Managing High-Fidelity Field Data Re-
cords

Gathering and processing high-fidelity field RF data from 
realistic scenarios poses a significant challenge for research-
ers and engineers aiming to train cognitive systems. They 
require rugged RF sensors with superior RF specifications 
and broad bandwidth to capture and merge data from mul-
tiple locations, creating a comprehensive picture of dynamic 
RF environments (Fig. 5). 

To train these systems effectively, teams must meticu-
lously tag, catalog, and load vast datasets covering a broad 
spectrum of scenarios, frequencies, and environmental con-
ditions. Achieving a comprehensive and representative data 
collection is a formidable logistical task.

The process of tagging and annotating spectrum data de-
mands intensive labor, as experts must describe the signal 
type, source, and environmental context, adding crucial op-
erational or battlefield insights. 

Ensuring data labeling is consistent and accurate across 
extensive datasets is critical to train AI models properly, as 
discrepancies can degrade model performance. Moreover, 
preprocessing the data—normalizing, reducing noise, and 
extracting features—can add hours of work.

Computational Requirements for Cognitive RF Systems 
and AI Algorithms

Running cognitive spectrum-management algorithms, 
especially those employing advanced machine-learning 

techniques like deep neural networks, require clusters of 
high-end processors capable of performing trillions of float-
ing-point operations per second (TFLOPS). 

To put this into perspective, a cognitive spectrum-man-
agement system deployed in a military operation might 
require a computing setup that rivals or exceeds the capa-
bilities of some of the most advanced commercial servers 
currently available. This setup would need to be robust 
enough to handle not only the computational load, but also 
the challenging environmental conditions often found in 
military contexts. 

However, when it comes to inference—the process of 
making real-time decisions based on the trained model—
the computational requirements decrease, allowing for 
more manageable field deployments.

Challenges for Test and Measurement Equipment
Instruments like Tektronix’s rugged RSAs face the chal-

lenges of integrating AI capabilities to help engineers un-
derstand the electromagnetic environment more clearly as 
well as develop cognitive spectrum operations systems more 
rapidly. 

AI will enable test and measurement instruments to in-
corporate expert assistance in knowing how to gather and 
process high-fidelity field RF data from multiple locations 
and varied electromagnetic scenarios to produce a compre-
hensive picture of dynamic RF conditions. 

On the generation side, high-bandwidth arbitrary wave-
form generators will evolve to assist in the dynamic design 
and creation of waveforms that adapt to RF conditions and 
measured system behavior. 

5. In this image, we see how one might capture high-fidelity field RF data from geographically distributed RF sensors.
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AI-Driven Spectrum Operations: Staying Ahead with 
Quality RF Hardware

Mastering intelligent spectrum operations is crucial to 
staying ahead of swiftly adapting adversaries. Investing in 
high-quality RF hardware, sophisticated AI algorithms, and 
robust data-processing capabilities is key to unlocking new 
potentials in EW and communication. 

The success of AI-driven spectrum systems depends 
heavily on the quality of the underlying hardware, including 
advanced antennas, transceivers, and digital baseband pro-
cessing units capable of operating across diverse frequen-
cies and conditions. Precision in test and measurement is 
essential, delivering RF sensors that capture a broad range 
of signals to feed accurate, high-quality data into AI models. 
This synergy between top-notch field data and cutting-edge 
computing will fuel breakthroughs in spectrum operations.

Reimagining the 1941 Pearl Harbor scenario with AI-
powered radar systems illustrates the transformative power 
of AI. Instead of a tragic surprise, AI’s predictive capabilities 
enable a swift and decisive response, turning a potential day 
of infamy into a demonstration of the strength of cognitive 
radar and spectrum operations. Such a scenario underscores 
the importance of AI in not just responding to threats, but 
proactively outclassing and outmaneuvering them.

Alejandro Buritica has worked in the RF test and measure-
ment industry for nearly 20 years, with experience spanning 
R&D, test engineering, and marketing management. He cur-
rently serves as an RF product manager at Tektronix. Alejan-
dro holds a degree in Electrical Engineering from Universidad 
Javeriana de Bogotá and a Master’s degree in Wireless Tech-
nologies from Politecnico di Torino, Italy.
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