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T
he crest factor, or peak-to-RMS ratio, is a signal met-
ric to quantify the dynamic range of a signal. It pro-
vides a link between its RMS value and its peak value. 
Because the RMS value is often known or easily mea-

surable, the crest factor provides a means of quickly estimating 
its peak value.

It’s often used when specifying an analog-to-digital con-
verter (ADC) to avoid exceeding the range of the converter, 
yet still provides sufficient resolution of the signal about its 
RMS value. The parameter is also useful in data-recovery 
applications to estimate the peak-to-peak jitter from its 
RMS value to avert bit errors or when specifying an ampli-
fier to avoid intermodulation distortion at signal peaks.

For a random signal with a Gaussian probability distri-
bution, the peak-to-RMS ratio depends on the sample size 
and isn’t limited to a maximum value. For example, with a 
sample size of 1,000, the average peak-to-RMS value will be 
about 3.3. If the sample size increases to 10,000, the average 
peak-to-RMS value rises to about 3.9.

For a bounded deterministic signal, the peak-to-RMS 
value can usually be computed and has a maximum value. 
For the sum of bounded deterministic signals, the behavior 
of the peak-to-RMS ratio as a function of the number of ad-
dends isn’t as clear.

One case of interest is the sum of sinusoids of various 
amplitudes and frequencies. This type of signal 
is frequently observed in the phase-noise charac-
teristic of a signal or the frequency spectrum of 

a mixer. In the case of phase noise, each tone contributes to 
the total deterministic jitter. Although the total RMS value 
of the tones can be computed, the peak-to-peak value can’t 
be determined from the phase-noise data. 

However, if the peak-to-RMS ratio for a sum of random 
sinusoids is known, then the peak-to-peak deterministic jit-
ter can be estimated from its RMS value. To this end, this 
article presents a study of the peak-to-RMS ratio for a sum 
of sinusoids with random parameters.

References 1 and 2 suggest the central limit theorem may 
be used to determine the nature of a sum of bounded deter-
ministic functions. We include a discussion of the validity of 
using the central limit theorem in this application.

RMS, Peak-to-Peak, and Peak-to-RMS of Sinusoidal 
Signals

Equation 1 relates the RMS value of a single sinusoid to 
its amplitude Ao. For the sample of a signal composed of the 
sum of N sinusoids with different frequencies, and where 
multiple periods of each frequency are in the sample, Equa-
tion 2 relates its RMS value to the RMS value of each in-
dividual sinusoid. This relationship follows since the total 
power of a sum of sinusoids at different frequencies is the 
sum of the power of each of its component sinusoids as il-
lustrated in Figure 1.

Estimating the Crest 
Factor (Peak-to-RMS 
Ratio) for a Sum of 
Sinusoidal Signals
Signals composed of a sum of sinusoids are often used when testing components 
and systems. The peak-to-RMS value of the sum stresses the dynamic range of the 
component or system, thus correcting a common misconception regarding the peak-
to-RMS ratio of the sum of random sinusoids.
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The peak-to-peak value of a single 
sinusoid is related to its RMS value by 
Equation 3 and its peak-to-RMS ratio 
is a constant as shown in Equation 4. 
However, the peak-to-peak value of a 
sum of N arbitrary amplitude, phase, 
and frequency sinusoids isn’t uniquely 
related to its RMS value. Intuitively, 
the phases and frequencies of the vari-
ous sinusoids can add constructively or 
destructively and the amplitude of one 
or more tones may dominate. Hence, 
the peak-to-peak value isn’t simply the 
sum of the individual peak-to-peak si-
nusoids.

Crest Factor for a Sum of Sinusoids ≈ Gaussian  
Distribution

A review of the literature for the crest factor of a sum of 
sinusoids suggests that the sum should approach a Gauss-
ian distribution. Specifically, Reference 1 includes the state-
ment:

“According to the central limit theorem, the overall effect of 
a number of bounded sources would have a Gaussian distri-
bution...”

Reference 2 adds:
“If a great number of small deterministic jitter1 (DJ) sources 

affect the signal, the overall effect of these bounded sources, 

2. This graph depicts 
the distributions 
of 1,000 sinusoid 
samples at 7.0 ps, 
98.0 ps, and 238.0 
ps.

1. Shown is the power spectral density of the sum of sinusoids at frequencies 
f1, f2, and f3.
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according to the central limit theorem, will follow a Gaussian 
distribution that could be recognized as random jitter1 (RJ) 
contribution.” 

However, the use of the central limit theorem to describe 
the nature of a set of continuous bounded sources isn’t a 
common use of the theorem as it typically applies to sets of 
discrete random variables. The following section reviews the 
central limit theorem and explores this possibility in greater 
detail.

What’s the Central Limit Theorem?
Each of these references cite the central limit theorem. It 

states that the distribution of a sum of  independent random 
variables Xi, each with mean µi and variance σ2

i under cer-
tain general conditions, approaches a Gaussian distribution 
with a mean of µ = µ1 + µ2 + … µN and variance σ2 = σ2

1 + 
σ2

2 + … σ2
N (Reference 3).

As an example of the proper use of the central limit theo-
rem, consider the values of N sinusoids at a common time 
instant. We’ll choose amplitudes, frequencies, initial phases, 
and start times of each sinusoid from uniform random dis-
tributions. Each individual sample at a single time instant is 
independent of any other samples at that same time instant, 
and the ensemble at that time instant are random. Therefore, 
the central limit theorem states that the distribution of these 
values at any time instant will approach a Gaussian distribu-
tion.

Figure 2 illustrates the histograms for the values of the si-

nusoids at times of 7 ps, 98 ps, 
and 238 ps. Although the sinu-
soid parameter values are based 
on uniform distributions, each 
distribution of 1,000 samples 
appears like a Gaussian distri-
bution. 

Figure 3 shows a more quan-
titative comparison of each 
distribution with its respective 
normal distribution of the same 
mean and standard deviation in 
a Q-Q plot. This plot indicates 
the three distributions are rea-
sonably well approximated by 
Gaussian distributions and 
serve as valid examples of the 
central limit theorem.

However, the references state 
the central limit theorem may 
be used to determine the nature 
of a sum of N continuous func-
tions and not a set of N inde-
pendent random variables. The 

following section discusses whether this is a valid applica-
tion of the central limit theorem.

How the Central Limit Theorem Applies to Continuous 
Functions

In the example of the sum of N sinusoids with uniformly 
distributed amplitudes, frequencies, initial phases, and start 
times, each sinusoid has a peak amplitude and RMS value. 
The peak-to-RMS value for the sum of 1,000 sinusoids is 
4.66.

If one is using the central limit theorem to estimate the 
distribution of the sum of sinusoids, then the peak-to-RMS 
ratio of the sum should reflect the peak-to-RMS ratio for 
a Gaussian distribution. The mean value of the extreme 
value function for a set of 1,000 random Gaussian numbers 
is about 3.3σ and represents a mean peak-to-RMS ratio of 
3.3. This isn’t consistent with the peak-to-RMS of the sum of 
1,000 random sinusoids.

Consider the frequency-domain characteristic of the sum 
of 1,000 sinusoids as shown in Figure 4. The spectrum ap-
pears relatively flat over frequency. However, this doesn’t 
imply that the probability distribution must be Gaussian 
in nature. A flat frequency spectrum only indicates that the 
power is uniform over a range of frequencies.

To better understand the nature of the distribution of a 
sum of sinusoids relative to a Gaussian distribution, Figure 5 
compares the peak-to-RMS ratios of sinusoidal sums of up 
to 1,000 sinusoids with that for a normal distribution of up 

3. A Q-Q plot of the distribution of 1,000 sinusoid values indicates that the three 
distributions are reasonably well approximated by Gaussian distributions and serve 
as valid examples of the central limit theorem.
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to 1,000 samples. It also includes the mean expected value 
(50% probability) of the peak-to-RMS ratio for a normal 
distribution as a function of its sample size based on its ex-
treme value function. The mean values are consistent with 
the results of the normally distributed values.

The peak-to-RMS ratio of a normal distribution has a 
positive slope over the entire range of 1,000 samples while 
the slope of the peak-to-RMS ratio for the sum of sinusoids 
saturates after about 100 sinusoids.

What’s evident from these observations is that the distri-
bution of a sum of random sinusoids isn’t well modeled by 
a Gaussian distribution. Using the central limit theorem to 
estimate the properties of a large sum of sinusoidal signals 
doesn’t appear to be a proper interpretation of the theorem.

Therefore, we performed a set of simulations using sums 
of between 1 and 1,000,000 (16) sinusoids with random am-
plitudes, frequencies, initial phases, and start times, to study 
the nature of the distributions and establish a possible rela-
tionship between the sum of N sinusoids and their peak-to-
RMS ratio. The following section includes a description of 
the study and summarizes its results.

Computing the Peak-to-RMS Ratio for a Sum of Up to N 
Sinusoids with Random Parameters

Studying the peak-to-RMS ratio of a sum of sinusoids re-
quires an efficient means to compute a sum of between 1 
and N sinusoids and to analyze each sum. This effort uses 
a compiled C program to compute the N f (t) sums, where 
each sum is of the form shown in Equation 5. 

where:
ti = start time in sec
fi = frequency in Hz
Ai = amplitude in V
φi = initial phase in radians

For this set of analyses, we set the number of time samples 
of each sum to 220 and the time interval between samples to 
1 ps for a total time span of 1.048576 µs. We advanced the 
number of sinusoids to sum, N, from 1 to 16. The sum of M 
sinusoids, where 2 ≤ M ≤ N, adds a sinusoid to the previous 
sum of M – 1 sinusoids to create the sum of M sinusoids. We 
also normalized the amplitude of each sum of M sinusoids 
to M and computed the peak-to-RMS value for each of the 
N sums.

Because the objective of this study is to determine the be-
havior of the peak-to-RMS ratio for a sum of sinusoids of 
arbitrary amplitudes, frequencies, initial phases, and start 
times, the simulation varied each of these parameters inde-
pendently and randomly. We did, however, enforce limits on 
the range of some parameters because any real peak-to-RMS 
measurement has a finite measurement bandwidth, and its 
dynamic range is limited by measurement noise.

To avoid including a sinusoid whose period exceeds the 
total sample time of 1.048576 µs and avoid the effects of 
aliasing, we limited the range of frequencies to a minimum 

4. Shown is the power spectral density of the sum of 1,000 random sinusoids in the frequency domain.
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of 1/1.048576 µs ≈ 935.684 kHz and a maximum of 1/16 ps 
= 62.5 GHz (16 time samples per period). If the random 
frequency falls above the allowed maximum, the frequency 
is clamped to the maximum allowable frequency. If the fre-
quency falls below the allowed minimum, an iterative pro-
cess generates a new random frequency that falls above the 
minimum allowable frequency.

The dynamic range of the amplitudes is limited to about 
35 dB by enforcing its value between 20 mV and 1.1 V. If the 
random amplitude exceeds 1.1 V, the amplitude is clamped 
to 1.1 V. If the amplitude is less than 20 mV, an iterative pro-
cess generates a new random number that provides an am-
plitude greater than 20 mV.

The range of the initial phase is between 0 and approxi-
mately 2π radians, and the start times vary from about −500 
ps to approximately +500 ps for a total range of about 1 ns. 
Varying the start time avoids phase coherence that occurs 
for small numbers of added sinusoids at the start of the sim-
ulation. Neither the initial phase nor the start time values 
are subjected to any limiting.

Each parameter is varied randomly using either a random 
uniform or a random Gaussian distribution. The sigma of 
the normalized Gaussian distribution is set to 1/6, and the 
range of the normalized uniform distribution is set to 1.0. 
The seed is based on the time stamp.

Example of Sinusoidal Sums in Temporal and Frequency 
Domains

Figure 6 illustrates two sums of 16 sinusoids in the time 
domain whose parameters are varied using uniform and 
Gaussian distributions. The statistical parameters for each 
waveform are included in the figure.

The RMS value of the sinusoidal sum whose parameters 
have a uniform distribution is slightly greater than the RMS 
value of the sum using parameters with a Gaussian distribu-
tion. This is expected because the probability of an ampli-
tude close to the maximum amplitude of 1 V is greater with 
a uniform distribution than with a Gaussian distribution.

The power spectral density of the two sums is shown in 
Figure 7 with the integrated RMS value for each sum. The 
RMS values are consistent with those computed from the 
time-domain data in Figure 6.

The flat frequency spectrum of the uniform distribution-
based sum and the bell-shaped spectrum of the Gaussian 
distribution-based sum are consistent with the frequencies 
from a uniform and Gaussian frequency distribution. 

Peak-to-RMS Simulation Results
We performed a total of 20 simulations for the sum of be-

tween 1 and 16 random sinusoids. Ten of the simulations 
used sinusoids with uniformly distributed parameters, and 
the remaining 10 used sinusoids with Gaussian distributed 

5. This plot com-
pares the peak-to-
RMS ratios for the 
sum of up to 1,000 

sinusoids and up 
to 1,000 random 

numbers.
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6. This image shows 
two sums of 16 

sinusoids in the time 
domain whose pa-

rameters are varied 
using uniform and 
Gaussian distribu-

tions.

7. Here’s the power 
spectral density of 
the sum of 16 sinu-
soids with uniform 

and Gaussian am-
plitude, frequency, 

start time, and phase 
distributions.
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8. This plot com-
pares the average 
values for the two 

sets of simulations 
as a function of the 

number of sinusoids 
and their curve fit 

coefficients.

9. Here, we compare 
the distributions 

of the 1,000 peak-
to-RMS values for 

each of the sums. In-
cluded is a summary 

of their statistics.
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parameters. We then computed the peak-to-RMS values for 
each of the 20 simulations as a function of the number of 
sinusoids; they’re shown in Figures 10 and 11 of Reference 4.

We fit each of the 20 curves to an expression of the form 
of Equation 6. Coefficient co of Equation 6 represents the 
asymptotic value of f(x) when coefficient c2is greater than 0.

where:
f(x) = peak-to-RMS ratio
x = number of sinusoids
ci = constants, I = 0, 1, 2

Figure 8 compares the average values for the two sets of 
simulations as a function of the number of sinusoids and 
their curve fit coefficients. The two average curves and their 
coefficients are essentially identical. The behavior of each as 
a function of the number of sinusoids is totally consistent 
with the result shown in Figure 5. As in that case, for large 
number of sinusoids, the peak-to-RMS ratio saturates to an 
asymptotic value of between 4.6 and 4.7.

From Figures 12 and 13 of Reference 4, there’s some varia-
tion in the asymptotic value. To study the amount of varia-
tion in the peak-to-RMS value, we performed an analysis of 
the variation in the peak-to-RMS values for 1,000 sums of 
10, 100, 1,000, 10,000, and 100,000 sinusoids using uniform 

distributed parameters. 
The histogram in Figure 9 compares the distributions of 

the 1,000 peak-to-RMS values for each of the sums and in-
cludes a summary of their statistics. Sums of greater than 
10 to 100 sinusoids have an average peak-to-RMS value of 
between 4.60 and 4.70 with an estimated standard deviation 
of about 0.180.

As further evidence that the use of the central limit theo-
rem to estimate the nature of the sum of sinusoids distribu-
tion isn’t appropriate, Figure 10 shows the distributions of 
the peak-to-RMS values for 1,000 samples of 10, 100, 1,000, 
10,000, and 100,000 Gaussian random numbers. As the 
number of samples increases, the average peak-to-RMS val-
ue doesn’t saturate but increases monotonically. This doesn’t 
provide an accurate model for the peak-to-RMS behavior 
for a sum of sinusoids.

The Bottom Line: Don’t Use the Central Limit Theorem 
to Estimate Peak-to-RMS Ratios

The equations for the RMS and peak-to-RMS values of 
a single sinusoidal signal are presented as the basis for il-
lustrating that the peak-to-RMS value of the sum of an ar-
bitrary number of random sinusoids isn’t easily computed. 
This article presented and reviewed earlier literature regard-
ing the nature of the distribution for a sum of sinusoids in 
light of the central limit theorem.

We conducted a study of the peak-to-RMS ratio for sums 

10. This plot shows 
the distributions of 

the peak-to-RMS 
values for 1,000 

samples of 10, 100, 
1,000, 10,000, and 
100,000 Gaussian 

random numbers.
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of sinusoids with random amplitudes, frequencies, initial 
phases, and start times using both random uniform and 
random Gaussian distributions. A discussion covered the 
peak-to-RMS results as a function of the number of sinu-
soids in the sum for each distribution type. Those results are 
compared to the peak-to-RMS values for sets of Gaussian 
random numbers of the same size. 

Unlike the Gaussian samples, the peak-to-RMS value 
for the sum of sinusoids is essentially bounded to its value 
at between 10 or 100 sinusoids. We’ve included equations 
and their coefficients relating the peak-to-RMS value to the 
number of sinusoids in the sum, based on curve fitting. The 
equations make it possible to quickly estimate the crest fac-
tor of a sum of N random sinusoids.

A more extensive description of the study with additional 
results is provided in Reference 4.

Shawn M. Logan (Life Member, IEEE) started at Bell Labo-
ratories in 1979. His fields of interest span frequency control 
devices, signal and system analysis, signal processing, analog 
circuit design, and simulation.
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